scholarly journals Effective numerical technique for nonlinear Caputo-Fabrizio systems of fractional Volterra integro-differential equations in Hilbert space

Author(s):  
Fatima Youbi ◽  
Shaher Momani ◽  
Shatha Hasan ◽  
Mohammed Al-Smadi
Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Bakka ◽  
S. Hajji ◽  
D. Kiouach

Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1467
Author(s):  
Muminjon Tukhtasinov ◽  
Gafurjan Ibragimov ◽  
Sarvinoz Kuchkarova ◽  
Risman Mat Hasim

A pursuit differential game described by an infinite system of 2-systems is studied in Hilbert space l2. Geometric constraints are imposed on control parameters of pursuer and evader. The purpose of pursuer is to bring the state of the system to the origin of the Hilbert space l2 and the evader tries to prevent this. Differential game is completed if the state of the system reaches the origin of l2. The problem is to find a guaranteed pursuit and evasion times. We give an equation for the guaranteed pursuit time and propose an explicit strategy for the pursuer. Additionally, a guaranteed evasion time is found.


2018 ◽  
Vol 102 (555) ◽  
pp. 428-434
Author(s):  
Stephen Kaczkowski

Difference equations have a wide variety of applications, including fluid flow analysis, wave propagation, circuit theory, the study of traffic patterns, queueing analysis, diffusion theory, and many others. Besides these applications, studies into the analogy between ordinary differential equations (ODEs) and difference equations have been a favourite topic of mathematicians (e.g. see [1] and [2]). These applications and studies bring to light the similar character of the solutions of a difference equation with a fixed step size and a corresponding ODE.Also, an important numerical technique for solving both ordinary and partial differential equations (PDEs) is the method of finite differences [3], whereby a difference equation with a small step size is utilised to obtain a numerical solution of a differential equation. In this paper, elements of both of these ideas will be used to solve some intriguing problems in pure and applied mathematics.


Sign in / Sign up

Export Citation Format

Share Document