Neuronal communication: Stochastic neuron dynamics and multi-synchrony states

Author(s):  
Saurabh Kumar Sharma ◽  
Dineshchandra Haobijam ◽  
Soibam Shyamchand Singh ◽  
Md. Zubbair Malik ◽  
R.K. Brojen Singh
Author(s):  
Tyler E. Maltba ◽  
Hongli Zhao ◽  
Daniel M. Tartakovsky

2021 ◽  
Vol 22 (15) ◽  
pp. 7887
Author(s):  
Carmen Nanclares ◽  
Andres Mateo Baraibar ◽  
Alfonso Araque ◽  
Paulo Kofuji

Recent studies implicate astrocytes in Alzheimer’s disease (AD); however, their role in pathogenesis is poorly understood. Astrocytes have well-established functions in supportive functions such as extracellular ionic homeostasis, structural support, and neurovascular coupling. However, emerging research on astrocytic function in the healthy brain also indicates their role in regulating synaptic plasticity and neuronal excitability via the release of neuroactive substances named gliotransmitters. Here, we review how this “active” role of astrocytes at synapses could contribute to synaptic and neuronal network dysfunction and cognitive impairment in AD.


2021 ◽  
Vol 3 (2) ◽  
pp. 312-341
Author(s):  
Maria Neus Ballester Roig ◽  
Tanya Leduc ◽  
Cassandra C. Areal ◽  
Valérie Mongrain

Uncaria rhynchophylla is a plant highly used in the traditional Chinese and Japanese medicines. It has numerous health benefits, which are often attributed to its alkaloid components. Recent studies in humans show that drugs containing Uncaria ameliorate sleep quality and increase sleep time, both in physiological and pathological conditions. Rhynchophylline (Rhy) is one of the principal alkaloids in Uncaria species. Although treatment with Rhy alone has not been tested in humans, observations in rodents show that Rhy increases sleep time. However, the mechanisms by which Rhy could modulate sleep have not been comprehensively described. In this review, we are highlighting cellular pathways that are shown to be targeted by Rhy and which are also known for their implications in the regulation of wakefulness and sleep. We conclude that Rhy can impact sleep through mechanisms involving ion channels, N-methyl-d-aspartate (NMDA) receptors, tyrosine kinase receptors, extracellular signal-regulated kinases (ERK)/mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K)/RAC serine/threonine-protein kinase (AKT), and nuclear factor-kappa B (NF-κB) pathways. In modulating multiple cellular responses, Rhy impacts neuronal communication in a way that could have substantial effects on sleep phenotypes. Thus, understanding the mechanisms of action of Rhy will have implications for sleep pharmacology.


1995 ◽  
Vol 50 (8) ◽  
pp. 718-726 ◽  
Author(s):  
Scott Rader ◽  
Diek W. Wheeler ◽  
W.C. Schieve ◽  
Pranab Das

Abstract Hübler's technique using aperiodic forces to drive nonlinear oscillators to resonance is analyzed. The oscillators being examined are effective neurons that model Hopfield neural networks. The method is shown to be valid under several different circumstances. It is verified through analysis of the power spectrum, force, resonance, and energy transfer of the system.


1981 ◽  
Vol 206 (1) ◽  
pp. 233-238 ◽  
Author(s):  
Richard M. Dasheiff ◽  
Mary C. Byrne ◽  
Vincent Patrone ◽  
James O. McNamara

Sign in / Sign up

Export Citation Format

Share Document