Substrate Integrated Waveguide Fed Dual band Quad-Elements Rectangular Dielectric Resonator MIMO Antenna for Millimeter Wave 5G Wireless Communication Systems

Author(s):  
Pandey Rajat Girjashankar ◽  
Trushit Upadhyaya
2021 ◽  
Author(s):  
Ashok kumar ◽  
Rajveer Singh Yaduvanshi

Abstract In this article Spherical DRA has been formulated , simulated and proto type developed. The detailed theoretical analysis along with simulations and measured results at 5.8 GHz have been presented in this article. The SDRA at 5.8 GHz covering 5G frewuenci band. The proposed design antenna provides the gain of 7.3 dB and return loss -25 dB. The measured results are in good match with simulated result. The proposed SDRA are good for 5G wireless networks, as well as other sub-6 band in wireless communication systems.


2021 ◽  
Vol 10 (1) ◽  
pp. 232-240
Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Yully Erwanti Masrukin ◽  
Tole Sutikno ◽  
Hussein Alsariera

Due to the progression growth of multiservice wireless communication systems in a single device, multiband bandpass filter has attract a great attention to the end user. Therefore, multiband bandpass filter is a crucial component in the multiband transceivers systems which can support multiple services in one device. This paper presents a design of dual-band bandpass filter at 2.4 GHz and 3.5 GHz for WLAN and WiMAX applications. Firstly, the wideband bandpass filter is designed at a center frequency of 3 GHz based on quarter-wavelength short circuited stub. Three types of defected microstrip structure (DMS) are implemented to produce a wide notch band, which are T-inversed shape, C-shape, and U- Shape. Based on the performance comparisons, U-shaped DMS is selected to be integrated with the bandpass filter. The designed filter achieved two passbands centered at 2.51 GHz and 3.59 GHz with 3 dB bandwidth of 15.94 % and 15.86 %. The proposed design is very useful for wireless communication systems and its applications such as WLAN and WiMAX 


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 98786-98791 ◽  
Author(s):  
Jianchun Xu ◽  
Ke Bi ◽  
Xiaojun Zhai ◽  
Yanan Hao ◽  
Klaus D. Mcdonald-Maier

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fei-Peng Lai ◽  
Lu-Wu Chang ◽  
Yen-Sheng Chen

A compact substrate integrated waveguide (SIW) antenna array that operates at 28 GHz and 38 GHz is proposed for fifth generation (5G) applications. The proposed array consists of four SIW cavities fabricated on one single layer of substrate. Each cavity implements a rhombic slot and a triangular-split-ring slot, resonating on TE101 and TE102 modes at 28 GHz and 38 GHz, respectively. In comparison with dual-band SIW antennas in the literature, the proposed configuration depicts a miniature footprint (28.7 × 30.8 mm2) without stacking substrates. To excite the four cavities with equal power, a broadband power divider that supports the propagation of TE10 mode is designed. Accordingly, the impedance bandwidths are 26.6–28.3 GHz and 36.8–38.9 GHz. The measured realized peak gain over the lower and higher bands is 9.3–10.9 dBi and 8.7–12.1 dBi, respectively. The measured half-power beam widths (HPBWs) at 28 GHz and 38 GHz are 20.7° and 15.0°, respectively. Considering these characteristics, including dual bands, high gain, narrow beam widths, miniaturization, and single layer, the proposed antenna array is a suitable candidate for millimeter-wave 5G communication systems with the flexibility in switching operating frequency bands against channel quality variations.


2003 ◽  
Vol 36 (5) ◽  
pp. 381-385 ◽  
Author(s):  
Cuthbert M. Allen ◽  
Atef Z. Elsherbeni ◽  
Charles E. Smith ◽  
Chun-Wen P. Huang ◽  
Kai-Fong Lee

Sign in / Sign up

Export Citation Format

Share Document