Seasonal response of herbage production and its nutrient and mineral contents to long-term cattle grazing on a Rough Fescue grassland

2009 ◽  
Vol 132 (1-2) ◽  
pp. 32-38 ◽  
Author(s):  
Chunli Li ◽  
Xiying Hao ◽  
Walter D. Willms ◽  
Mengli Zhao ◽  
Guodong Han
2012 ◽  
Vol 175 (3) ◽  
pp. 339-344 ◽  
Author(s):  
Chunli Li ◽  
Xiying Hao ◽  
Benjamin H. Ellert ◽  
Walter D. Willms ◽  
Mengli Zhao ◽  
...  
Keyword(s):  
Soil C ◽  

1990 ◽  
Vol 4 (2) ◽  
pp. 258-263 ◽  
Author(s):  
Peter Bergen ◽  
James R. Moyer ◽  
Gerald C. Kozub

Hereford cows and their spring-born calves grazed an irrigated grass pasture containing about 13% dandelion based on dry weight yield. Grazing treatments were 1) no grazing, 2) 4 days of grazing just before clipping, and 3) long-term grazing just before clipping. In clippings taken in June and July after the grazing treatments, the percentage dandelion in the forage was similar in all three grazing treatments, indicating that cattle used dandelion as readily as grass. The protein and mineral contents of dandelion were at appropriate levels to meet the established requirements of beef cattle.


2016 ◽  
Vol 72 (3) ◽  
pp. 581-589 ◽  
Author(s):  
X. Gao ◽  
X. Hao ◽  
D. H. Marchbank ◽  
R. Beck ◽  
W. D. Willms ◽  
...  

2014 ◽  
Vol 94 (1) ◽  
pp. 33-39 ◽  
Author(s):  
D. J. Thompson ◽  
W. D. Willms

Thompson, D. J. and Willms, W. D. 2014. Effects of long-term protection from grazing on phenotypic expression in geographically separated mountain rough fescue populations. Can. J. Plant Sci. 94: 33–39. Whether or not long-term grazing or protection from grazing alters the genetic makeup of grass populations has been debated. Mountain rough fescue [(Festuca campestris (Rydb.)], which is highly sensitive to summer grazing, and becomes dominant in plant communities with long-term protection, was chosen to address this question. Plants from three geographic sites (Stavely in AB, Milroy in the Kootenay trench, BC and Goose Lake on the BC interior plateau) with divergent grazing histories were vegetatively propagated from tillers. Daughter plants were planted into two field nurseries (at Kamloops, BC, and Stavely, AB) and morphological measurements were taken in two field seasons post-establishment. Plants from all three populations were taller, flowered earlier, and were more productive at the Kamloops nursery site. Of the three geographic sources, plants from the Goose Lake site were most distinct with narrower leaves, later flowering, and greater yield. Plants with a long history of grazing had slightly shorter fertile tillers and leaves than plants with a history of long-term protection.


2019 ◽  
Vol 99 (6) ◽  
pp. 905-916
Author(s):  
E.W. Bork ◽  
M.P. Lyseng ◽  
D.B. Hewins ◽  
C.N. Carlyle ◽  
S.X. Chang ◽  
...  

While northern temperate grasslands are important for supporting beef production, it remains unclear how grassland above- and belowground biomass responds to long-term cattle grazing. Here, we use a comprehensive dataset from 73 grasslands distributed across a broad agro-climatic gradient to quantify grassland shoot, litter, and shallow (top 30 cm) root biomass in areas with and without grazing. Additionally, we relate biomass to soil carbon (C) concentrations. Forb biomass was greater (p < 0.05) in grazed areas, particularly those receiving more rainfall. In contrast, grass and total aboveground herbage biomass did not differ with grazing (total: 2320 kg ha−1 for grazed vs. 2210 kg ha−1 for non-grazed; p > 0.05). Forb crude protein concentrations were lower (p < 0.05) in grazed communities compared with those that were non-grazed. Grasslands subjected to grazing had 56% less litter mass. Root biomass down to 30 cm remained similar between areas with (9090 kg ha−1) and without (7130 kg ha−1) grazing (p > 0.05). Surface mineral soil C concentrations were positively related to peak grassland biomass, particularly total (above + belowground) biomass, and with increasing forb biomass in grazed areas. Finally, total aboveground shoot biomass and soil C concentrations in the top 15 cm of soil were both positively related to the proportion of introduced plant diversity in grazed and non-grazed grasslands. Overall, cattle grazing at moderate stocking rates had minimal impact on peak grassland biomass, including above- and belowground, and a positive contribution exists from introduced plant species to maintaining herbage productivity and soil C.


Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 174
Author(s):  
Markus Anda ◽  
Erna Suryani ◽  
Dedi Nursyamsi

Effect of long-term wet and dry (redox) cycles attributed to seasonally flooded soils in rotation of rice and upland food crops on soil characteristics is not yet available in modern agriculture. The objective of this study was to assess soil morphological features, mineralogical compositions and dynamic pedogenic processes under rotation of rice and honey-taste sweet potato. Four profiles that experienced redox cycles and one that did not (as a control) were sampled for soil analyses. Results showed that all soil profiles, irrespective of redox cycles, derived from similar parent materials as revealed by the same type of weatherable mineral contents (hornblende, labradorite, hypersthene, and olivine or muscovite), ranging within 27–84%. High proportions of easily weatherable minerals corresponded to the high availability of Ca, Mg, Si, Fe, Mn and Cu nutrients, suggesting the release of nutrient reserves from weatherable minerals. In all soils, the clay fraction contained only the one mineral, halloysite. Long-term redox cycles due to rotation of rice–honey-taste sweet potato resulted in a remarkable pedomorphic feature, i.e. discrete large soft black Mn segregation with the highest accumulation in the middle part of soil profiles. Other pedogenic processes were Ca, Mg, and Si translocation from the upper to lower layers of soil profiles, but Fe was retained in the uppermost two horizons. We proposed a new soil classification ‘Manganic Eutrudept’ as a subgroup category to accommodate the soil property of high soft Mn segregation.


Sign in / Sign up

Export Citation Format

Share Document