Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops

2018 ◽  
Vol 255 ◽  
pp. 1-11 ◽  
Author(s):  
Chiara De Notaris ◽  
Jim Rasmussen ◽  
Peter Sørensen ◽  
Jørgen Eivind Olesen
2021 ◽  
Vol 78 (5) ◽  
Author(s):  
André Guareschi ◽  
Joanei Cechin ◽  
Mario Antonio Bianchi ◽  
Ivan Carlos Maldaner ◽  
Sergio Luiz de Oliveira Machado

2020 ◽  
Vol 63 (1) ◽  
pp. 44-64 ◽  
Author(s):  
Brendon J. Malcolm ◽  
John M. de Ruiter ◽  
Dawn E. Dalley ◽  
Sam Carrick ◽  
Deanne Waugh ◽  
...  

Author(s):  
Jevgenija Ņečajeva ◽  
Zane Mintāle ◽  
Ieva Dudele ◽  
Anda Isoda-Krasovska ◽  
Jolanta Čūrišķe ◽  
...  

<p class="R-AbstractKeywords"><span lang="EN-GB">Integrated weed management (IWM) is a complex approach to weed control that is based on use of several different methods complementing each other, instead of relying on one single method, like chemical weed control. Weed control methods that can be used as parts of IWM strategy include mechanical weed control, application of herbicides, low tillage, changes in the rate and application time of fertilizers, use of undersown crops and crop rotation. Weed surveys were carried out in 2013 and 2014 in the southeastern part of Latvia. The aim of this study was to assess the effect of crop rotation and other field management practices on weed density and weed species composition using the data collected in the surveys. Survey was carried out in the arable fields of conventional farms within four different size categories. One of the significant factors that explained the variation of weed composition within a field was a proportion of cereals in crop rotation within a four year period. Further surveys are required to estimate the effects of climatic variables. Density-dependence can also be important for practical management decisions for particular weed species and should be investigated.</span></p>


Author(s):  
Michael A. Meier ◽  
Martha G. Lopez-Guerrero ◽  
Ming Guo ◽  
Marty R. Schmer ◽  
Joshua R. Herr ◽  
...  

Root associated microbes are key players in plant health, disease resistance, and nitrogen (N) use efficiency. It remains largely unclear how the interplay of biological and environmental factors affects rhizobiome dynamics in agricultural systems. Here, we quantified the composition of rhizosphere and bulk soil microbial communities associated with maize (Zea mays L.) and soybean (Glycine max L.) in a long-term crop rotation study under conventional fertilization and low N regimes. Over two growing seasons, we evaluated the effects of environmental conditions and several treatment factors on the abundance of rhizosphere and soil colonizing microbial taxa. Time of sampling, host plant species and N fertilization had major effects on microbiomes, while no effect of crop rotation was observed. Using variance partitioning as well as 16S sequence information, we further defined a set of 82 microbial genera and functional taxonomic groups at the sub-genus level that show distinct responses to treatment factors. We identified taxa that are highly specific to either maize or soybean rhizospheres, as well as taxa that are sensitive to N fertilization in plant rhizospheres and bulk soil. This study provides insights to harness the full potential of soil microbes in maize and soybean agricultural systems through plant breeding and field management. Importance Plant roots are colonized by large numbers of microbes, some of which may help the plant acquire nutrients and fight diseases. Our study contributes to a better understanding of root-colonizing microbes in the widespread and economically important maize/soybean crop rotation system. The long-term goal of this research is to optimize crop plant varieties and field management to create the best possible conditions for beneficial plant-microbe interactions to occur. These beneficial microbes may be harnessed to sustainably reduce dependency on pesticides and industrial fertilizer. We identify groups of microbes specific to the maize or to the soybean host and microbes that are sensitive to nitrogen fertilization. These microbes represent candidates that may be influenced through plant breeding or field management, and future research will be directed towards elucidating their roles in plant health and nitrogen usage.


2010 ◽  
Vol 39 (3) ◽  
pp. 845-854 ◽  
Author(s):  
Juan M. Herrera ◽  
Boy Feil ◽  
Peter Stamp ◽  
Markus Liedgens

2002 ◽  
Vol 139 (4) ◽  
pp. 361-370 ◽  
Author(s):  
J. E. OLESEN ◽  
I. A. RASMUSSEN ◽  
M. ASKEGAARD ◽  
K. KRISTENSEN

The possibilities for increasing total grain yield in organic cereal production through manipulation of crop rotation design were investigated in a field experiment on different soil types in Denmark from 1997 to 2000. Three experimental factors were included in the experiment in a factorial design: (1) proportion of grass-clover and pulses in the rotation, (2) catch crop (with and without) and (3) manure (with and without). Three four-course rotations were compared. Two of the rotations had 1 year of grass-clover as a green manure crop, either followed by spring wheat or by winter wheat. The grass-clover was replaced by winter cereals in the third rotation. Animal manure was applied as slurry in rates corresponding to 40% of the nitrogen (N) demand of the cereal crops.Rotational grain yields of the cereal and pulse crops were calculated by summing yields for each plot over the 4 years in the rotation. The rotational yields were affected by all experimental factors (rotation, manure and catch crop). However, the largest effects on both dry matter and N yields were caused by differences between sites caused by differences in soils, climate and cropping history. The rotation without a green manure crop produced the greatest total yield. Dry matter and N yields in this rotation were about 10% higher than in the rotation with a grass-clover ley in 1 year in 4. Therefore, the yield benefits from the grass-clover ley could not adequately compensate for the yield reduction as a result of leaving 25% of the rotation out of production. There were no differences in dry matter and N yields in grains between the rotations, where either spring or winter cereals followed the grass-clover ley. The N use efficiency for ammonium-N in the applied manure corresponded to that obtained from N in commercial fertilizer. There were only very small yield benefits from the use of catch crops. However, this may change over time as fertility builds up in the system with catch crops.


Sign in / Sign up

Export Citation Format

Share Document