Improving the practicability of remote sensing data-assimilation-based crop yield estimations over a large area using a spatial assimilation algorithm and ensemble assimilation strategies

2020 ◽  
Vol 291 ◽  
pp. 108082
Author(s):  
Yi Chen ◽  
Fulu Tao
2021 ◽  
Vol 13 (6) ◽  
pp. 1094
Author(s):  
Xingshuo Peng ◽  
Wenting Han ◽  
Jianyi Ao ◽  
Yi Wang

In this study, we develop a method to estimate corn yield based on remote sensing data and ground monitoring data under different water treatments. Spatially explicit information on crop yields is essential for farmers and agricultural agencies to make well-informed decisions. One approach to estimate crop yield with remote sensing is data assimilation, which integrates sequential observations of canopy development from remote sensing into model simulations of crop growth processes. We found that leaf area index (LAI) inversion based on unmanned aerial vehicle (UAV) vegetation index has a high accuracy, with R2 and root mean square error (RMSE) values of 0.877 and 0.609, respectively. Maize yield estimation based on UAV remote sensing data and simple algorithm for yield (SAFY) crop model data assimilation has different yield estimation accuracy under different water treatments. This method can be used to estimate corn yield, where R2 is 0.855 and RMSE is 692.8kg/ha. Generally, the higher the water stress, the lower the estimation accuracy. Furthermore, we perform the yield estimate mapping at 2 m spatial resolution, which has a higher spatial resolution and accuracy than satellite remote sensing. The great potential of incorporating UAV observations with crop data to monitor crop yield, and improve agricultural management is therefore indicated.


2021 ◽  
pp. 413-422
Author(s):  
Shao Li ◽  
Xia Xu

Using remote sensing data to monitor large area drought is one of the important methods of drought monitoring at present. However, the traditional remote sensing drought monitoring methods mainly focus on monitoring single drought response factors such as soil moisture or vegetation status, and the research on comprehensive multi-factor drought monitoring is limited. In order to improve the ability to resist drought events, this paper takes Henan Province of China as an example, takes multi-source remote sensing data as data sources, considers various disaster-causing factors, adopts random forest method to model, and explores the method of regional remote sensing comprehensive drought monitoring using various remote sensing data sources. Compared with neural network, classification regression tree and linear regression, the performance of random forest is more stable and tolerant to noise and outliers. In order to provide a new method for comprehensive assessment of regional drought, a comprehensive drought monitoring model was established based on multi-source remote sensing data, which comprehensively considered the drought factors such as soil water stress, vegetation growth status and meteorological precipitation profit and loss in the process of drought occurrence and development.


2020 ◽  
Vol 13 (3) ◽  
pp. 1267-1284 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Y. Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of physical dynamics is crucial to provide scientifically credible information on lake ecosystem management. We show how the combination of in situ observations, remote sensing data, and three-dimensional hydrodynamic (3D) numerical simulations is capable of resolving various spatiotemporal scales involved in lake dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we develop a flexible framework by incorporating DA into 3D hydrodynamic lake models. Using an ensemble Kalman filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in situ and satellite remote sensing temperature data into a 3D hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatiotemporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed with the goal of near-real-time operational systems (e.g., integration into meteolakes.ch).


Author(s):  
R. Stöckli ◽  
T. Rutishauser ◽  
D. Dragoni ◽  
J. O'Keefe ◽  
P. E. Thornton ◽  
...  

2011 ◽  
Vol 7 ◽  
pp. 140-145 ◽  
Author(s):  
Johannes van der Kwast ◽  
Frank Canters ◽  
Derek Karssenberg ◽  
Guy Engelen ◽  
Tim Van de Voorde ◽  
...  

2000 ◽  
Vol 31 ◽  
pp. 327-332 ◽  
Author(s):  
Ronald L. S. Weaver ◽  
Konrad Steffen ◽  
John Heinrichs ◽  
James A. Maslanik ◽  
Gregory M. Flato

AbstractThe detection of small changes in concentration or thickness in the Arctic or Antarctic ice cover is an important topic in the current global-climate-change debate. Change detection using satellite data alone requires rigorous error analysis for their derived ice products, including inter-satellite validation for long time series. All models of physical processes are only approximations, and the best models of complicated physical processes have errors and uncertainties. A promising approach is data assimilation, combining model, in situ data and satellite remote-sensing data. Sea-ice monitoring from satellite, ice-model estimates, and the potential benefit of combining the two are discussed in some detail. In a case-study we demonstrate how the sea-ice backscatter for the Beaufort Sea region was derived using a backscattering model in combination with an ice model. We conclude that, for data assimilation, the first steps include the use of simple models, moving, with success at this level, to progressively more complex models. We also recommend reconfiguring the current remote-sensing data to include precise time tags with each pixel. For example, the current Special Sensor Microwave Imager data might be reissued in a time-tagged orbital (or gridded) format as opposed to the currently available daily averaged gridded data. Finally, error statistics and quality-control information also need to be readily available in a form useful for assimilation. The effectiveness of data-assimilation techniques is directly linked to the availability of data error statistics.


Sign in / Sign up

Export Citation Format

Share Document