Drivers of difference in CO2 and CH4 emissions between rubber plantation and tropical rainforest soils

2021 ◽  
Vol 304-305 ◽  
pp. 108391
Author(s):  
Wenjun Zhou ◽  
Jing Zhu ◽  
Hongli Ji ◽  
John Grace ◽  
Liqing Sha ◽  
...  
2020 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Noor Farikhah Haneda ◽  
Nisfi Yuniar

Deforestasi atau perubahan fungsi dari hutan menjadi non-hutan berperan dalam perubahan ekosistem dan spesies di dalamnya. Serangga sebagai salah satu fauna di dalamnya merupakan aspek yang menarik untuk dikaji khususnya semut. Tujuan penelitian ini adalah mengidentifikasi peranan-peranan dari genus semut yang ditemukan di ekosistem transformasi. Penelitian dilaksanakan di Desa Bungku, Kecamatan Bajubang, Kabupaten Batanghari, Provinsi Jambi. Metode yang digunakan dalam penelitian ini adalah membuat plot pengamatan secara purposive sampling. Plot pengamatan dipasang di empat eksosistem hutan dengan jumlah masing - masing ekosistem sebanyak empat plot. Setiap plot memiliki lima sub plot yang tersebar di empat eksosistem hutan untuk pemasangan pitfall trap. Teknik pengambilan sampel semut menggunakan pitfall trap di empat ekosistem. Empat ekosistem tersebut yaitu hutan sekunder, perkebunan kelapa sawit, kebun karet, dan hutan karet. Hasil penelitian ditemukan sebanyak 33 genus dari 6 subfamili. Selanjutnya dari 33 genus dikelompokkan berdasarkan peranannya. Berdasarkan peranannya terdapat 46% pencari makan , 36% predator, 3% semut tentara, 3% pemakan bangkai, dan 3% lainnya (semut pemanen/pemetik, omnivora, predator, dan pemakan bangkai). Camponotus sebagai genus dominan memiliki peranan pencari makan, dan Pheidole mempunyai peranan sebagai penghancur biji dan sebagian lainnya adalah omnivora. The Role of Ants in Lowland Tropical Rainforest TransformationAbstractDeforestation or changes functions from forest to non-forest play a role in changing ecosystems and the species within them. Insect as one of the fauna is an interesting aspect to study, especially ants. Aims of this study is to identify the roles of the genus of ants that found in the transformation ecosystem. This study was conducted in Bungku Village, Bajubang District, Batanghari Regency, Jambi. Method used in this study is to make a plot of observation by purposive sampling. Ant sampling techniques use pitfall traps in four ecosystems i.e.. secondary forest, oil palm plantation,rubber plantation, and jungle rubber. This study found 33 genera from 6 subfamilies. Furthermore, 33 genera are grouped based on their roles, i.e. (1) 46% foragers, (2) 36% for predators, (3) 3% for army ants, (4) 3% for scavengers, and (5) 3% for others (harvesting ants, omnivores, predators and scavengers too). Camponotus as the dominant genus has a role for foragers, and Pheidole has a role as a seed destroyer and the other part is omnivorous.


2021 ◽  
Author(s):  
Rui Sun ◽  
Guoyu Lan ◽  
Chuan Yang ◽  
Zhixiang Wu ◽  
Banqian Chen ◽  
...  

Abstract. Land-use changes can alter soil properties and thus affect soil quality. Our understanding of how forest conversion (from tropical rainforest to rubber plantations) affects soil properties and soil quality is limited. An ideal testing ground for analyzing such land-use change and its impacts is Hainan Island, the largest tropical island in China. Based on 21 soil physicochemical and biological properties, a soil quality index (SQI) employed principal component analysis to assess soil quality changes from the conversion of tropical rainforests to rubber plantations. The results showed that (i) soil available potassium, available phosphorus, microbial biomass carbon, cellulose decomposition, acid phosphatase, and urease were vital soil properties for soil quality assessment on Hainan Island. (ii) The SQI of rubber plantations decreased by 26.48 % compared to tropical rainforests, while four investigated soil properties (soil pH, total phosphorus, cellulose decomposition, and actinomyces) increased. (iii) The SQI of both the tropical rainforests and rubber plantations showed significant spatial differences, which, under tropical rainforests, was more sensitive to seasonal changes than those under rubber plantations. (iv) Structural equation modeling suggested that forest conversion directly impacted soil quality and, indirectly impacted soil qualities' spatial variation by their interaction with soil types and geographical positions. Overall, though the conversion of tropical rainforest to rubber plantation did not decrease all soil properties, the tropical rainforest with its high soil quality should be protected.


2021 ◽  
Author(s):  
Guoyu Lan ◽  
Chuan Yang ◽  
Zhixiang Wu

Abstract. Soil microbial communities play a crucial role in ecosystem functioning. Past research has examined the effects of forest conversion on soil microbial composition and diversity, but it remains unknown how networks within these communities respond to forest conversion such as when tropical rainforest are replaced with rubber plantations. In this study, we used Illumina sequencing and metagenome shotgun sequencing to analyze bacterial and fungal community network structure in a large number of soil samples from tropical rainforest and rubber plantation sites in Hainan Island, China. Our results showed only a few shared network edges were observed in both bacterial and fungal communities, which indicates that forest conversion altered soil microbial network structure. We found a greater degree of network structure and a larger number of network edges among bacterial networks in samples from tropical rainforest compared to samples from rubber plantations. The difference was especially pronounced during the rainy season and indicates that rainforest bacterial networks were more complex than rubber plantation bacterial networks. However, rubber plantations soil fungal networks showed more higher links and higher network degree, suggesting that forest conversion does not reduce fungal network complexity. We found that some groups of Acidobacteria were keystone taxa in our tropical rainforest soils, while Actinobacteria were keystone taxa in rubber plantation soils. In addition, seasonal change had a strong effect on network degree, the complexity of soil bacterial and fungal network structure. In conclusion, forest conversion changed soil pH and other soil properties, such as available potassium (AK) and total nitrogen (TN), which resulted in changes in bacterial and fungal network composition and structure.


CATENA ◽  
2021 ◽  
Vol 200 ◽  
pp. 105172
Author(s):  
Xiai Zhu ◽  
Wanjun Zhang ◽  
Xiaojin Jiang ◽  
Sissou Zakari ◽  
Enfu Lu ◽  
...  

2013 ◽  
Vol 46 (1) ◽  
pp. 168-174 ◽  
Author(s):  
Wenjie Liu ◽  
Qinpu Luo ◽  
Jintao Li ◽  
Pingyuan Wang ◽  
Hongjian Lu ◽  
...  

The Xishuangbanna (SW China) landscape has changed dramatically during the past three decades due to the conversion of tropical rainforest to rubber plantations. This study characterized the influence of conversion of tropical rainforest to rubber plantation on potential splash erosion rate and actual splash erosion rate. The average potential splash erosion rate was 2.1 times higher in the rubber plantation than in the open, while for the rainforest it was only 1.2 times higher than in the open, suggesting that the rubber plantation canopy greatly increased the rainsplash erosion. The average actual splash erosion rate was 2.0 times higher in the rubber plantation than in the rainforest, demonstrating that the rainforest was more effective in controlling splash erosion. The actual splash erosion rate was considerably lower in the terrace bench than in the riser bank in the rubber plantation, indicating that the riser bank was more sensitive to raindrop splash. Hence, protection of terrace risers with productive vegetation or litter/mulch layer is of vital importance in this bench-terraced rubber plantation. These results clearly show that conversion of tropical rainforest to rubber plantation had a negative effect on controlling splash erosion.


Author(s):  
G Lan ◽  
Bangqian Chen ◽  
Zhixiang Wu ◽  
Chuan Yang ◽  
Xicai Zhang

To date, few studies have assessed the impact of forest conversion or seasonal changes on soil microbial community assembly. To fill this research gap, 16S rRNA and ITS gene sequences were used to evaluate the effects of forest conversion and seasonal changes on the assembly of bacterial and fungal communities using 260 soil samples collected from tropical rainforest and rubber plantation sites across Hainan Island, South China. A majority (~60%) of observed OTUs conformed with neutral model expectations, indicating that neutral processes were important for the assembly of soil microbial communities. For bacterial communities, the NST (normalized stochasticity ratio) was higher in the tropical rainforest (0.746 in the dry season, 0.684 in the rainy season) versus rubber plantation sites (0.647, 0.584), regardless of season. Thus, forest conversion decreased the importance of stochasticity for soil bacterial community assembly. For fungal communities, rubber plantation communities showed greater stochasticity (NST = 0.578) than rainforest communities (NST = 0.388) in the dry season, but the reverse was true in the rainy season (NST = 0.852 for rubber plantations; NST = 0.978 for rainforest). Both the NST results and structural equation modeling showed that bacterial communities were more stochastic in the dry season, while fungal communities were more stochastic in the rainy season; the effects of seasonal changes on assembly therefore differed between bacterial and fungal communities. More importantly, forest conversion did not have a direct impact on the assembly of bacterial or fungal communities, but exerted indirect effects via soil pH and soil AK.


Tellus B ◽  
2008 ◽  
Vol 60 (4) ◽  
Author(s):  
Shinjiro Ohkubo ◽  
Yoshiko Kosugi ◽  
Satoru Takanashi ◽  
Naoko Matsuo ◽  
Makoto Tani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document