Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan

2009 ◽  
Vol 96 (4) ◽  
pp. 551-564 ◽  
Author(s):  
M.D. Ahmad ◽  
H. Turral ◽  
A. Nazeer
2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


2020 ◽  
Vol 12 (18) ◽  
pp. 2949
Author(s):  
Megan Blatchford ◽  
Chris M. Mannaerts ◽  
Yijian Zeng ◽  
Hamideh Nouri ◽  
Poolad Karimi

This paper analyses the effect of the spatial assessment scale on irrigation performance indicators in small and medium-scale agriculture. Three performance indicators—adequacy (i.e., sufficiency of water use to meet the crop water requirement), equity (i.e., fairness of irrigation distribution), and productivity (i.e., unit of physical crop production/yield per unit water consumption)—are evaluated in five irrigation schemes for three spatial resolutions—250 m, 100 m, and 30 m. Each scheme has varying plot sizes and distributions, with average plot sizes ranging from 0.2 ha to 13 ha. The datasets are derived from the United Nations Food and Agricultural Organization (FAO) water productivity through open access of remotely sensed–derived data (the Water Productivity Open Access Portal—WaPOR) database. Irrigation indicators performed differently in different aspects; for adequacy, all three resolutions show similar spatial trends for relative evapotranspiration (ET) across levels for all years. However, the estimation of relative ET is often higher at higher resolution. In terms of equity, all resolutions show similar inter-annual trends in the coefficient of variation (CV); higher resolutions usually have a higher CV of the annual evapotranspiration and interception (ETIa) while capturing more spatial variability. For productivity, higher resolutions show lower crop water productivity (CWP) due to higher aboveground biomass productivity (AGBP) estimations in lower resolutions; they always have a higher CV of CWP. We find all resolutions of 250 m, 100 m, and 30 m suitable for inter-annual and inter-scheme assessments regardless of plot size. While each resolution shows consistent temporal trends, the magnitude of the trend in both space and time is smoothed by the 100 m and 250 m resolution datasets. This frequently results in substantial differences in the irrigation performance assessment criteria for inter-plot comparisons; therefore, 250 m and 100 m are not recommended for inter-plot comparison for all plot sizes, particularly small plots (<2 ha). Our findings highlight the importance of selecting the spatial resolution appropriate to scheme characteristics when undertaking irrigation performance assessment using remote sensing.


2021 ◽  
Vol 13 (14) ◽  
pp. 7967
Author(s):  
Usha Poudel ◽  
Haroon Stephen ◽  
Sajjad Ahmad

Southern California’s Imperial Valley (IV) faces serious water management concerns due to its semi-arid environment, water-intensive crops and limited water supply. Accurate and reliable irrigation system performance and water productivity information is required in order to assess and improve the current water management strategies. This study evaluates the spatially distributed irrigation equity, adequacy and crop water productivity (CWP) for two water-intensive crops, alfalfa and sugar beet, using remotely sensed data and a geographical information system for the 2018/2019 crop growing season. The actual crop evapotranspiration (ETa) was mapped in Google Earth Engine Evapotranspiration Flux, using the linear interpolation method in R version 4.0.2. The approx() function in the base R was used to produce daily ETa maps, and then totaled to compute the ETa for the whole season. The equity and adequacy were determined according to the ETa’s coefficient of variation (CV) and relative evapotranspiration (RET), respectively. The crop classification was performed using a machine learning approach (a random forest algorithm). The CWP was computed as a ratio of the crop yield to the crop water use, employing yield disaggregation to map the crop yield, using county-level production statistics data and normalized difference vegetation index (NDVI) images. The relative errors (RE) of the ETa compared to the reported literature values were 7–27% for alfalfa and 0–3% for sugar beet. The average ETa variation was low; however, the spatial variation within the fields showed that 35% had a variability greater than 10%. The RET was high, indicating adequate irrigation; 31.5% of the alfalfa and 12% of the sugar beet fields clustered in the Valley’s central corner were consuming more water than their potential visibly. The CWP showed wide variation, with CVs of 32.92% for alfalfa and 25.4% for sugar beet, signifying a substantial scope for CWP enhancement. The correlation between the CWP, ETa and yield showed that reducing the ETa to approximately 1500 mm for alfalfa and 1200 mm for sugar beet would help boost the CWP without decreasing the yield, which is nearly equivalent to 44.52M cu. m (36,000 acre-ft) of water. The study’s results could help water managers to identify poorly performing fields where water conservation and management could be focused.


2020 ◽  
Vol 9 (8) ◽  
pp. 484
Author(s):  
Alidou Sawadogo ◽  
Louis Kouadio ◽  
Farid Traoré ◽  
Sander J. Zwart ◽  
Tim Hessels ◽  
...  

Traditional methods based on field campaigns are generally used to assess the performance of irrigation schemes in Burkina Faso, resulting in labor-intensive, time-consuming, and costly processes. Despite their extensive application for such performance assessment, remote sensing (RS)-based approaches remain very much underutilized in Burkina Faso. Using multi-temporal Landsat images within the Python module for the Surface Energy Balance Algorithm for Land model, we investigated the spatiotemporal performance patterns of the Kou Valley irrigation scheme (KVIS) during two consecutive cropping seasons. Four performance indicators (depleted fraction, relative evapotranspiration, uniformity of water consumption, and crop water productivity) for rice, maize, and sweet potato were calculated and compared against standard values. Overall, the performance of the KVIS varied depending on year, crop, and the crop’s geographical position in the irrigation scheme. A gradient of spatially varied relative evapotranspiration was observed across the scheme, with the uniformity of water consumption being fair to good. Although rice was the most cultivated, a shift to more sweet potato farming could be adopted to benefit more from irrigation, given the relatively good performance achieved by this crop. Our findings ascertain the potential of such RS-based cost-effective methodologies to serve as basis for improved irrigation water management in decision support tools.


2009 ◽  
Vol 34 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Mobin-ud-Din Ahmad ◽  
Md. Aminul Islam ◽  
Ilyas Masih ◽  
Lal Muthuwatta ◽  
Poolad Karimi ◽  
...  

2022 ◽  
Author(s):  
Albachew Shumye ◽  
Tesfa Worku Meshesha

Abstract Background: Irrigation scheme performance assessment is vital to evaluate the impacts of irrigation practices, to identify performance gaps and to improve system performances. However, irrigation performance assessment has not been carried out for Yelen irrigation scheme since its operation. Therefore, this study has been done with the purpose of identifying and understanding the current level of irrigation performance of Yelen irrigation scheme. The indicators of adequacy, efficiency, dependability, deficiency and equity were used to determine hydraulic performance. Primary data were collected through flow measurement using current meter and Parshall flume, transect walk, household surveys and group discussions, whereas Secondary data were collected from different sources. CROPWAT 8.0 model, SPSS, Microsoft excels and GIS software was used to analyze the data. Water delivery indicators were evaluated from the amounts of water which was actually applied and which should have been applied.Results: According to the results of the study, the value of adequacy, dependability, efficiency, deficiency and equity were found to be 0.84, 0.26, 0.93, 0.17and 0.34 respectively. Generally, the performance of the irrigation system is poor. It mainly resulted due to water scarcity, illegal water abstraction, sedimentation of canals and inadequate operation and maintenance provisions.Concussions: Therefore, adequate maintenance and suitable management approaches are required to improve the irrigation system performance. Under the water scarce situations, improving the performance of water delivery systems can offer an opportunity to realize field level water savings.


Sign in / Sign up

Export Citation Format

Share Document