Chapter Satellite-Based Assessment of Agricultural Water Consumption, Irrigation Performance, and Water Productivity in a Large Irrigation System in Pakistan

2021 ◽  
Vol 13 (14) ◽  
pp. 7967
Author(s):  
Usha Poudel ◽  
Haroon Stephen ◽  
Sajjad Ahmad

Southern California’s Imperial Valley (IV) faces serious water management concerns due to its semi-arid environment, water-intensive crops and limited water supply. Accurate and reliable irrigation system performance and water productivity information is required in order to assess and improve the current water management strategies. This study evaluates the spatially distributed irrigation equity, adequacy and crop water productivity (CWP) for two water-intensive crops, alfalfa and sugar beet, using remotely sensed data and a geographical information system for the 2018/2019 crop growing season. The actual crop evapotranspiration (ETa) was mapped in Google Earth Engine Evapotranspiration Flux, using the linear interpolation method in R version 4.0.2. The approx() function in the base R was used to produce daily ETa maps, and then totaled to compute the ETa for the whole season. The equity and adequacy were determined according to the ETa’s coefficient of variation (CV) and relative evapotranspiration (RET), respectively. The crop classification was performed using a machine learning approach (a random forest algorithm). The CWP was computed as a ratio of the crop yield to the crop water use, employing yield disaggregation to map the crop yield, using county-level production statistics data and normalized difference vegetation index (NDVI) images. The relative errors (RE) of the ETa compared to the reported literature values were 7–27% for alfalfa and 0–3% for sugar beet. The average ETa variation was low; however, the spatial variation within the fields showed that 35% had a variability greater than 10%. The RET was high, indicating adequate irrigation; 31.5% of the alfalfa and 12% of the sugar beet fields clustered in the Valley’s central corner were consuming more water than their potential visibly. The CWP showed wide variation, with CVs of 32.92% for alfalfa and 25.4% for sugar beet, signifying a substantial scope for CWP enhancement. The correlation between the CWP, ETa and yield showed that reducing the ETa to approximately 1500 mm for alfalfa and 1200 mm for sugar beet would help boost the CWP without decreasing the yield, which is nearly equivalent to 44.52M cu. m (36,000 acre-ft) of water. The study’s results could help water managers to identify poorly performing fields where water conservation and management could be focused.


2019 ◽  
Vol 17 ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2020 ◽  
Vol 9 (8) ◽  
pp. 484
Author(s):  
Alidou Sawadogo ◽  
Louis Kouadio ◽  
Farid Traoré ◽  
Sander J. Zwart ◽  
Tim Hessels ◽  
...  

Traditional methods based on field campaigns are generally used to assess the performance of irrigation schemes in Burkina Faso, resulting in labor-intensive, time-consuming, and costly processes. Despite their extensive application for such performance assessment, remote sensing (RS)-based approaches remain very much underutilized in Burkina Faso. Using multi-temporal Landsat images within the Python module for the Surface Energy Balance Algorithm for Land model, we investigated the spatiotemporal performance patterns of the Kou Valley irrigation scheme (KVIS) during two consecutive cropping seasons. Four performance indicators (depleted fraction, relative evapotranspiration, uniformity of water consumption, and crop water productivity) for rice, maize, and sweet potato were calculated and compared against standard values. Overall, the performance of the KVIS varied depending on year, crop, and the crop’s geographical position in the irrigation scheme. A gradient of spatially varied relative evapotranspiration was observed across the scheme, with the uniformity of water consumption being fair to good. Although rice was the most cultivated, a shift to more sweet potato farming could be adopted to benefit more from irrigation, given the relatively good performance achieved by this crop. Our findings ascertain the potential of such RS-based cost-effective methodologies to serve as basis for improved irrigation water management in decision support tools.


2019 ◽  
Vol 17 (10) ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1161
Author(s):  
Nana Yan ◽  
Bingfang Wu ◽  
Weiwei Zhu

The water crisis has become increasingly serious, particularly in arid and semiarid areas. Agricultural water productivity (AWP) is an important indicator for evaluating water use efficiency and agricultural water management. This study uses water consumption derived from satellite data, combined with statistical survey information, to analyze the spatiotemporal variations and driving factors of AWP at the region and county scales over the past 15 years (2002–2015) in the Turpan region (China). The results showed the increasing change trends of AWP throughout Turpan and its three counties. A multiple regression analysis was applied to evaluate AWP, agricultural production and water consumption with driving factors. The contribution of agricultural factors (fertilizer amount, pesticide use and irrigation area) was 86.3% for change of production and 93.3% for change of water consumption in Turpan. The synchronous changes associated with the similar factor contributions resulted in a nonsignificant change in AWP for the whole region. However, the significant increase in AWP in Toksun County was caused by a weakened effect of synchronous changes due to the difference between the largest contributing factors (irrigation area for production at 29.3% and temperature for water consumption at 35.4%). The different change trends of the AWP at regional and county levels indicated that agricultural planting structure adjustment could be an effective way to improve water productivity. This paper provides objective and new information to understand the effects of AWP changes at regional and county scales, which is beneficial for irrigation agriculture development in Turpan.


Water Policy ◽  
2007 ◽  
Vol 9 (S1) ◽  
pp. 29-44 ◽  
Author(s):  
David Molden ◽  
Dong Bin ◽  
Ronald Loeve ◽  
Randolph Barker ◽  
T. P. Tuong

Increasing agricultural water productivity will be a key factor in China's ability to maintain food security in the face of rapidly growing water demand from other sectors. This paper highlights how such achievements can be considered and made by examining and contrasting water institutions, policies and management strategies across scales in two irrigation systems in China situated within strikingly different environments, the Zhanghe Irrigation System (ZIS) in the relatively water-abundant Yangtze River basin and the Liuyuankou Irrigation System (LIS) in the highly water-stressed Yellow River basin. The results show, perhaps surprisingly, that institutional arrangements which have evolved in the water-abundant system are more conducive to water savings. However, the particular conclusions on water productivity and savings also depend in part on definitions of scale and other factors. These findings form part of a changing trend in thinking about irrigation, water productivity and water savings that considers the analysis of scales, multiple uses, and practices of irrigation in the context of water scarcity and has direct implications for China's efforts to better use its scarce water resources.


Author(s):  
J.N. Abedalrahman ◽  
R.J. Mansor ◽  
D.R. Abass

A field experiment was carried out in the field of the College of Agriculture / University of Wasit, located on longitude  45o   50o   33.5o   East and latitude 32o 29o 49.8o North, in Spring season of the agricultural season 2019, in order to estimate the water consumption of potato crop using SWRT technology and under the drip irrigation system. The experiment was designed according to Randomized Complete Block Design (RCBD) with three replications and four treatments that include of the SWRT treatment (the use of plastic films under the plant root area in an engineering style), and the treatment of vegetal fertilizer (using Petmos), organic fertilizer (sheep manure), and the control treatment . Potato tubers (Solanum tuberosum L.)  var. Burin was planted for spring season on 10/2/2019 at the soil depth of 5-10 cm. The highest reference water consumption for the potato crop during the season was calculated by Najeeb Kharufa, which was 663.03 mm. The highest actual water consumption for the potato crop during the season for the control treatment was 410.1 mm. The results showed increase in the values of the crop coefficient (Kc) in the stages of tubers formation and tubers filling stage as compared to the vegetative and ripening stages, ranged from 1.37-1.92 for the two stages of tubers formation and tubers filling. The SWRT treatment gave the highest water use efficiency during the season, was 3.46 kg m-3 .


Sign in / Sign up

Export Citation Format

Share Document