Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat

2019 ◽  
Vol 221 ◽  
pp. 486-492
Author(s):  
Shou-Chen Ma ◽  
Wei-Qiang Zhang ◽  
Ai-Wang Duan ◽  
Tong-Chao Wang
2007 ◽  
Vol 50 (6) ◽  
pp. 2073-2080 ◽  
Author(s):  
Q. Q. Li ◽  
Y. H. Chen ◽  
M. Y. Liu ◽  
X. B. Zhou ◽  
B. D. Dong ◽  
...  

2015 ◽  
Vol 45 (1) ◽  
pp. 87-100 ◽  
Author(s):  
R.M. Petrone ◽  
L. Chasmer ◽  
C. Hopkinson ◽  
U. Silins ◽  
S.M. Landhäusser ◽  
...  

This study examines the hydrological recovery of two regenerating boreal trembling aspen (Populus tremuloides Michx.) dominated stands and the sensitivity of that regeneration to drought within the first 5 years of establishment. The results indicate that evapotranspiration fluxes and water-use efficiency rebounded quickly as a result of new vegetation foliage growth and wet conditions found within the first 2 years following the harvest. However, a period of dry years had a significant influence on rates of postharvest growth, carbon dioxide (CO2), and water fluxes at these sites. The northern study area (NSA) and southern study area (SSA) were harvested in the winters of 2007 and 2008, respectively. The first and second years of regeneration at the SSA and NSA, respectively, were marked by an early spring thaw and higher-than-normal precipitation, while air temperatures remained slightly above the 30-year normal. During this period, mean measured height of vegetation tripled at both sites, and cumulative evapotranspiration was approximately 60% of that prior to harvest by the end of the second year of growth. By the third year (2009), the NSA became a sink for atmospheric CO2 during the snow free season (days of the year 128–238) despite low precipitation during the latter half of the summer. Volumetric soil moisture content in 2009 was the highest (on average) of the 5 years examined due to heavy snowfall and a late start to the growing season (where air temperatures consistently exceeded 0 °C), resulting in sustained productivity. However, cumulative annual precipitation also declined to 79% and 57% in 2009 and 2010, respectively, of the 30-year normal for that region, leading to significant (lagged) declines in forest productivity at the NSA in 2010 and 2011. This resulted in the site becoming a source of CO2 to the atmosphere during the 2010 and 2011 growing seasons (annual balance was not measured). Throughout the drought period (2009, 2010, and 2011), mean stand height increased by only 15%, 11%, and 14%, respectively, compared with the mean stand height in 2008. Water-use efficiency also declined in 2010 and 2011, whereas differences in light-use efficiency did not vary significantly because foliage was maintained (i.e., leaves did not abscise as a result of drought). The results of this study indicate that regenerating aspen stands are sensitive to drought and respond relatively quickly to changes in the soil moisture regime. This is important because regional drying as a result of predicted climatic changes combined with increased industrial activity may result in significant decline in productivity within these stands over broad regions.


1987 ◽  
Vol 67 (4) ◽  
pp. 811-823
Author(s):  
J. L. DIONNE ◽  
A. R. PESANT ◽  
G. M. BARNETT

The objectives of this study were to determine the changes in yield response and water use efficiency of alfalfa (Medicago sativa L. 'Saranac') and timothy (Phleum pratense L. 'Climax') to potassium applications and variations in soil moisture regimes. For each of the two test crops the factorial combination of the following treatments were replicated three times: three soils (Ste Rosalie clay, Greensboro loam, and Danby sandy loam), potassium (0, 25, 50 and 100 mg K kg−1 of dry soil) and three moisture levels: (1) optimal, 70–100% of available water (AW); (2) semi-dry, 0–100% AW; and (3) dry, 0–50% AW. Yield increases of 68% for alfalfa and 40% for timothy were produced by potassium applied to soil under the optimal moisture regime with almost no yield increase under dry soil moisture conditions. Water use efficiency was higher for alfalfa than for timothy, and increased with rates of potassium on Greensboro loam and Danby sandy loam but not on Ste Rosalie clay. Potassium content of alfalfa was lower when grown at optimal soil moisture than in the dry regime. Differences in potassium content between moisture regimes were small for timothy. Due to higher yields, potassium uptake by alfalfa was greater when soils were cropped at optimal moisture. However, less exchangeable potassium was found after the experiment in soils cropped to alfalfa in the optimal moisture regime than in soils under the dry moisture regime. Therefore potassium fertilizer was most effective at the optimal moisture level (near field capacity). Key words: Potassium fertilization, exchangeable potassium, soil moisture regime, potassium uptake, alfalfa, timothy


2011 ◽  
Vol 59 (1) ◽  
pp. 13-22
Author(s):  
Z. Varga-Haszonits ◽  
E. Enzsölné Gerencsér ◽  
Z. Lantos ◽  
Z. Varga

The temporal and spatial variability of soil moisture, evapotranspiration and water use were investigated for winter barley. Evaluations were carried out on a database containing meteorological and yield data from 15 stations. The spatial distribution of soil moisture, evapotranspiration and water use efficiency (WUE) was evaluated from 1951 to 2000 and the moisture conditions during the growth period of winter barley were investigated. The water supply was found to be favourable, since the average values of soil moisture remained above the lower limit of favourable water content throughout the growth period, except for September–December and May–June. The actual evapotranspiration tended to be close to the potential evapotranspiration, so the water supplies were favourable throughout the vegetation period. The calculated values of WUE showed an increasing trend from 1960 to 1990, but the lower level of agricultural inputs caused a decline after 1990. The average values of WUE varied between 0.87 and 1.09 g/kg in different counties, with higher values in the northern part of the Great Hungarian Plain. The potential yield of winter barley can be calculated from the maximum value of WUE. Except in the cooler northern and western parts of the country, the potential yield of winter barley, based on the water supply, could exceed 10 t/ha.


Sign in / Sign up

Export Citation Format

Share Document