Institutional, provider, and patient correlates of low-density lipoprotein and non–high-density lipoprotein cholesterol goal attainment according to the Adult Treatment Panel III guidelines

2011 ◽  
Vol 161 (6) ◽  
pp. 1140-1146 ◽  
Author(s):  
Salim S. Virani ◽  
LeChauncy D. Woodard ◽  
Cassie R. Landrum ◽  
Kenneth Pietz ◽  
Degang Wang ◽  
...  
2020 ◽  
Vol 27 (15) ◽  
pp. 1663-1674
Author(s):  
Antonio J Vallejo-Vaz ◽  
Lawrence A Leiter ◽  
Stefano Del Prato ◽  
Marja-Riitta Taskinen ◽  
Dirk Müller-Wieland ◽  
...  

Aims Guidelines recommend targeting non-high-density lipoprotein cholesterol to reduce cardiovascular risk. We assessed the impact of baseline triglycerides on non-high-density lipoprotein cholesterol goal attainment in 10 phase 3 trials with alirocumab versus control ( n = 4983). Methods Trials were grouped into four pools based on alirocumab dose (75–150 mg every 2 weeks), control (placebo/ezetimibe) and statin use. Baseline triglyceride quintiles were built within each pool. Non-high-density lipoprotein cholesterol goal attainment (very high risk: <100 mg/dl; moderate/high risk: <130 mg/dl), low-density lipoprotein cholesterol goal attainment (very high risk: <70 mg/dl; moderate/high risk: <100 mg/dl) and changes from baseline in lipid parameters were assessed at Week 24 among baseline triglyceride quintiles. Results Higher baseline triglycerides were associated with a worse cardiovascular risk profile. Low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol increased with higher triglycerides, but the magnitude in non-high-density lipoprotein cholesterol was three- to four-fold higher compared with the increase in low-density lipoprotein cholesterol. Non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol percentage reductions from baseline with alirocumab were similar regardless of baseline triglycerides. A greater proportion of alirocumab-treated patients attained non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol goals compared with placebo or ezetimibe. Unlike low-density lipoprotein cholesterol goal attainment, non-high-density lipoprotein cholesterol goal attainment significantly declined with increasing baseline triglycerides ( p < 0.05 for trend tests). A single standard deviation increase in baseline log(triglycerides) was significantly associated with lower odds ratios of attaining non-high-density lipoprotein cholesterol goals in the different pools and treatment (alirocumab/placebo/ezetimibe) groups, unlike low-density lipoprotein cholesterol goal attainment. Conclusion Individuals with increased triglycerides have higher non-high-density lipoprotein cholesterol levels and lower rates of non-high-density lipoprotein cholesterol goal attainment (unlike low-density lipoprotein cholesterol goal attainment). Alirocumab improves non-high-density lipoprotein cholesterol goal attainment in this population. These results highlight the impact of triglycerides on non-high-density lipoprotein cholesterol and the need for novel therapies targeting triglyceride-related pathways.


2005 ◽  
Vol 62 (11) ◽  
pp. 811-819
Author(s):  
Aleksandra Jovelic ◽  
Goran Radjen ◽  
Stojan Jovelic ◽  
Marica Markovic

Background/Aim. C-reactive protein is an independent predictor of the risk of cardiovascular events and diabetes mellitus in apparently healthy men. The relationship between C-reactive protein and the features of metabolic syndrome has not been fully elucidated. To assess the cross-sectional relationship between C-reactive protein and the features of metabolic syndrome in healthy people. Methods. We studied 161 military pilots (agee, 40?6 years) free of cardiovascular disease, diabetes mellitus and active inflammation on their regular annual medical control. Age, total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, triglycerides, fasting glucose, glycosylated hemoglobin, blood pressure, smoking habit, waist circumference and body mass index were evaluated. Plasma C-reactive protein was measured by the immunonephelometry (Dade Behring) method. Metabolic syndrome was defined according to the National Cholesterol Education Program Expert Panel. Results. The mean C-reactive protein concentrations in the subjects grouped according to the presence of 0, 1, 2 and 3 or more features of the metabolic syndrome were 1.11, 1.89, 1.72 and 2.22 mg/L, respectively (p = 0.023) with a statistically, significant difference between those with 3, and without metabolic syndrome (p = 0.01). In the simple regression analyses C-reactive protein did not correlate with the total cholesterol, low density lipoprotein cholesterol, high density lipoprotein cholesterol, body mass index and blood pressure (p > 0.05). In the multiple regression analysis, waist circumference (? = 0.411, p = 0.000), triglycerides to high density lipoprotein cholesterol ratio (? = 0.774, p = 0.000), smoking habit (? = 0.236, p = 0.003) and triglycerides (? = 0.471, p = 0.027) were independent predictors of C-reactive protein. Conclusions. Our results suggested a cross-sectional independent correlation between the examined cardiovascular risk factors as the predominant features of metabolic syndrome and C-reactive protein in the group of apparently healthy subjects. The lack of correlation of C-reactive protein with the total cholesterol and low density lipoprotein cholesterol in our study may suggest their different role in the process of atherosclerosis and the possibility to determine C-reactive protein in order to identify high-risk subjects not identified with cholesterol screening.


1997 ◽  
Vol 92 (5) ◽  
pp. 473-479 ◽  
Author(s):  
Gregory D. Sloop ◽  
David W. Garber

1. Increased blood or plasma viscosity has been observed in almost all conditions associated with accelerated atherosclerosis. Cognizant of the enlarging body of evidence implicating increased viscosity in atherogenesis, we hypothesize that the effects of low-density lipoprotein and high-density lipoprotein on blood viscosity correlate with their association with risk of atherosclerosis. 2. Blood viscometry was performed on samples from 28 healthy, non-fasting adult volunteers using a capillary viscometer. Data were correlated with haematocrit, fibrinogen, serum viscosity, total cholesterol, high-density lipoprotein-cholesterol, triglycerides and calculated low-density lipoprotein-cholesterol. 3. Low-density lipoprotein-cholesterol was more strongly correlated with blood viscosity than was total cholesterol (r = 0.4149, P = 0.0281, compared with r = 0.2790, P = 0.1505). High-density lipoprotein-cholesterol levels were inversely associated with blood viscosity (r = −0.4018, P = 0.0341). 4. To confirm these effects, viscometry was performed on erythrocytes, suspended in saline, which had been incubated in plasma of various low-density lipoprotein/high-density lipoprotein ratios. Viscosity correlated directly with low-density lipoprotein/high-density lipoprotein ratio (n = 23, r = 0.8561, P < 0.01). 5. Low-density lipoprotein receptor occupancy data suggests that these effects on viscosity are mediated by erythrocyte aggregation. 6. These results demonstrate that the effects of low-density lipoprotein and high-density lipoprotein on blood viscosity in healthy subjects correlate with their association with risk of atherosclerosis. These effects on viscosity may play a role in atherogenesis by modulating the dwell or residence time of atherogenic particles in the vicinity of the endothelium.


Sign in / Sign up

Export Citation Format

Share Document