False-negative cerebral infarction on diffusion magnetic resonance imaging

2006 ◽  
Vol 24 (6) ◽  
pp. 746-748 ◽  
Author(s):  
Yukinori Akiyama ◽  
Yasufumi Asai ◽  
Kiyohiro Houkin
MethodsX ◽  
2020 ◽  
Vol 7 ◽  
pp. 101023
Author(s):  
Albert M. Isaacs ◽  
Rowland H. Han ◽  
Christopher D. Smyser ◽  
David D. Limbrick ◽  
Joshua S. Shimony

2019 ◽  
Vol 58 (6) ◽  
pp. 671-676
Author(s):  
Amy M. West ◽  
Pierre A. d’Hemecourt ◽  
Olivia J. Bono ◽  
Lyle J. Micheli ◽  
Dai Sugimoto

The objective of this study was to determine diagnostic accuracy of magnetic resonance imaging (MRI) and computed tomography (CT) scans in young athletes diagnosed with spondylolysis. A cross-sectional study was used. Twenty-two young athletes (14.7 ± 1.5 years) were diagnosed as spondylolysis based on a single-photon emission CT. Following the diagnosis, participants underwent MRI and CT scan imaging tests on the same day. The sensitivity and false-negative rate of the MRI and CT scans were analyzed. MRI test confirmed 13 (+) and 9 (−) results while CT test showed 17 (+) and 5 (−) results. The sensitivity and false-negative rate of MRI were, respectively, 59.1% (95% confidence interval [CI] = 36.7% to 78.5%) and 40.9% (95% CI = 21.5% to 63.3%). Furthermore, the sensitivity and false-negative rate of CT scan were 77.3% (95% CI = 54.2% to 91.3%) and 22.7% (95% CI = 0.09% to 45.8%). Our results indicated that CT scan is a more accurate imaging modality to diagnose spondylolysis compared with MRI in young athletes.


2021 ◽  
Vol 22 (10) ◽  
pp. 5216
Author(s):  
Koji Kamagata ◽  
Christina Andica ◽  
Ayumi Kato ◽  
Yuya Saito ◽  
Wataru Uchida ◽  
...  

There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.


Neoplasia ◽  
1999 ◽  
Vol 1 (2) ◽  
pp. 113-117 ◽  
Author(s):  
Jean-Philippe Galons ◽  
Maria I. Altbach ◽  
Gillian D. Paine-Murrieta ◽  
Charles W. Taylor ◽  
Robert J. Gillies

Sign in / Sign up

Export Citation Format

Share Document