A pilot study: Clinical efficacy of novel polycaprolactone-tricalcium phosphate membrane for guided bone regeneration in rabbit calvarial defect model

Author(s):  
Leonardo Saigo ◽  
Vinoth Kumar ◽  
Yuchun Liu ◽  
Jing Lim ◽  
Swee Hin Teoh ◽  
...  
2019 ◽  
Vol 7 (20) ◽  
pp. 3250-3259 ◽  
Author(s):  
Yali Miao ◽  
Yunhua Chen ◽  
Xiao Liu ◽  
Jingjing Diao ◽  
Naru Zhao ◽  
...  

3D-printed β-TCP scaffolds decorated with melatonin via dopamine mussel-inspired chemistry enhance the osteogenesis and in vivo bone regeneration.


2020 ◽  
Vol 20 ◽  
pp. 100706 ◽  
Author(s):  
Hoang Phuc Dang ◽  
Cedryck Vaquette ◽  
Tara Shabab ◽  
Román A. Pérez ◽  
Ying Yang ◽  
...  

2017 ◽  
Vol 13 (1) ◽  
pp. 015014 ◽  
Author(s):  
Jin-Hyung Shim ◽  
Jae-hyang Jeong ◽  
Joo-Yun Won ◽  
Ji-Hyeon Bae ◽  
Geunseon Ahn ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 501 ◽  
Author(s):  
Barbara Siegenthaler ◽  
Chafik Ghayor ◽  
Nisarat Ruangsawasdi ◽  
Franz E. Weber

N,N-Dimethylacetamide (DMA) is FDA approved as an excipient and is used as drug-delivery vehicle. Due to its amphipathic nature and diverse bioactivities, it appears to be a good combination of biodegradable poly-lactide-co-glycolide (PLGA)-based guided bone regeneration membranes. Here we show that the solvent DMA can be loaded to PLGA membranes by different regimes, leading to distinct release profiles, and enhancing the bone regeneration in vivo. Our results highlight the potential therapeutic benefits of DMA in guided bone regeneration procedures, in combination with biodegradable PLGA membranes.


2021 ◽  
Vol 11 (24) ◽  
pp. 11941
Author(s):  
Nobuhito Tsumano ◽  
Hirohito Kubo ◽  
Rie Imataki ◽  
Yoshitomo Honda ◽  
Yoshiya Hashimoto ◽  
...  

Mechanical and resorbable scaffolds are in high demand for stem cell-based regenerative medicine, to treat refractory bone defects in craniofacial abnormalities and injuries. Multipotent progenitor cells, such as dedifferentiated fat (DFAT) cells, are prospective sources for regenerative therapies. Herein, we aimed to demonstrate that a composite gelatin sponge (α-TCP/GS) of alfa-tricalcium phosphate (α-TCP) mixed with gelatin scaffolds (GS), with/without DFATs, induced bone regeneration in a rat calvarial defect model in vivo. α-TCP/GS was prepared by mixing α-TCP and 2% GS using vacuum-heated methods. α-TCP/GS samples with/without DFATs were transplanted into the model. After 4 weeks of implantation, the samples were subjected to micro-computed tomography (μ-CT) and histological analysis. α-TCP/GS possessed adequate mechanical strength; α-TCP did not convert to hydroxyapatite upon contact with water, as determined by X-ray diffraction. Moreover, stable α-TCP/GS was formed by electrostatic interactions, and verified based on the infrared peak shifts. μ-CT analyses showed that bone formation was higher in the α-TCP/GS+ DFAT group than in the α-TCP/GS group. Therefore, the implantation of α-TCP/GS comprising DFAT cells enhanced bone regeneration and vascularization, demonstrating the potential for healing critical-sized bone defects.


2013 ◽  
Vol 27 (1) ◽  
pp. 209-217 ◽  
Author(s):  
Hyun Seok ◽  
Sang-Woon Lee ◽  
Seong-Gon Kim ◽  
Dong-Hyun Seo ◽  
Han Sung Kim ◽  
...  

2015 ◽  
Vol 103 (10) ◽  
pp. 3397-3406 ◽  
Author(s):  
Suzane C. Pigossi ◽  
Guilherme J. P. L. de Oliveira ◽  
Livia S. Finoti ◽  
Rafael Nepomuceno ◽  
Luis Carlos Spolidorio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document