An analysis of conservative finite difference schemes for differential equations with discontinuous coefficients

2007 ◽  
Vol 191 (1) ◽  
pp. 183-192
Author(s):  
Ebru Ozbilge
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Peng Jiang ◽  
Xiaofeng Ju ◽  
Dan Liu ◽  
Shaoqun Fan

The authors attempt to construct the exact finite-difference schemes for linear stochastic differential equations with constant coefficients. The explicit solutions to Itô and Stratonovich linear stochastic differential equations with constant coefficients are adopted with the view of providing exact finite-difference schemes to solve them. In particular, the authors utilize the exact finite-difference schemes of Stratonovich type linear stochastic differential equations to solve the Kubo oscillator that is widely used in physics. Further, the authors prove that the exact finite-difference schemes can preserve the symplectic structure and first integral of the Kubo oscillator. The authors also use numerical examples to prove the validity of the numerical methods proposed in this paper.


2013 ◽  
Vol 13 (3) ◽  
pp. 281-289
Author(s):  
Manfred Dobrowolski

Abstract. We study the convergence of finite difference schemes for approximating elliptic equations of second order with discontinuous coefficients. Two of these finite difference schemes arise from the discretization by the finite element method using bilinear shape functions. We prove an convergence for the gradient, if the solution is locally in H3. Thus, in contrast to the first order convergence for the gradient obtained by the finite element theory we show that the gradient is superclose. From the Bramble–Hilbert Lemma we derive a higher order compact (HOC) difference scheme that gives an approximation error of order four for the gradient. A numerical example is given.


Sign in / Sign up

Export Citation Format

Share Document