Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison

2015 ◽  
Vol 268 ◽  
pp. 201-226 ◽  
Author(s):  
H. Hasan Örkcü ◽  
Volkan Soner Özsoy ◽  
Ertugrul Aksoy ◽  
Mustafa Isa Dogan
Author(s):  
Amit Kumar ◽  
T. V. Vijay Kumar

A data warehouse, which is a central repository of the detailed historical data of an enterprise, is designed primarily for supporting high-volume analytical processing in order to support strategic decision-making. Queries for such decision-making are exploratory, long and intricate in nature and involve the summarization and aggregation of data. Furthermore, the rapidly growing volume of data warehouses makes the response times of queries substantially large. The query response times need to be reduced in order to reduce delays in decision-making. Materializing an appropriate subset of views has been found to be an effective alternative for achieving acceptable response times for analytical queries. This problem, being an NP-Complete problem, can be addressed using swarm intelligence techniques. One such technique, i.e., the similarity interaction operator-based particle swarm optimization (SIPSO), has been used to address this problem. Accordingly, a SIPSO-based view selection algorithm (SIPSOVSA), which selects the Top-[Formula: see text] views from a multidimensional lattice, has been proposed in this paper. Experimental comparison with the most fundamental view selection algorithm shows that the former is able to select relatively better quality Top-[Formula: see text] views for materialization. As a result, the views selected using SIPSOVSA improve the performance of analytical queries that lead to greater efficiency in decision-making.


Author(s):  
Zakariya Y Algamal ◽  
Ghalia Basheer

The three-parameter Weibull distribution is a continuous distribution widely used in the study of reliability and life data. The estimation of the distribution parameters is an important problem that has received a lot of attention by researchers because of theirs effects in several measurements. In this research, we propose a particle swarm optimization (PSO) to estimate the three-parameter Weibull distribution and then to estimate the reliability and hazard functions. The real data results indicate that our proposed estimation method is significantly consistent in estimation compared to the maximum likelihood method. In terms of log likelihood and mean time to failure (MTTF). 


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Sign in / Sign up

Export Citation Format

Share Document