Hille–Nehari theorems for dynamic equations with a time scale independent critical constant

2019 ◽  
Vol 346 ◽  
pp. 336-351
Author(s):  
Başak Karpuz
2018 ◽  
Vol 36 (2) ◽  
pp. 185
Author(s):  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi

Let T be a periodic time scale. The purpose of this paper is to use Krasnoselskii's fixed point theorem to prove the existence of positive periodic solutions for nonlinear neutral dynamic equations with variable coefficients on a time scale. We invert these equations to construct a sum of a contraction and a compact map which is suitable for applying the Krasnoselskii's theorem. The results obtained here extend the work of Candan <cite>c1</cite>.


2021 ◽  
Vol 45 (4) ◽  
pp. 531-542
Author(s):  
GOKULA NANDA CHHATRIA ◽  

In this work, we study the oscillation of a kind of second order impulsive delay dynamic equations on time scale by using impulsive inequality and Riccati transformation technique. Some examples are given to illustrate our main results.


2005 ◽  
Vol 301 (2) ◽  
pp. 491-507 ◽  
Author(s):  
Martin Bohner ◽  
Lynn Erbe ◽  
Allan Peterson

2015 ◽  
Vol 25 (14) ◽  
pp. 1540024 ◽  
Author(s):  
Marat Akhmet ◽  
Mehmet Onur Fen

By using the reduction technique to impulsive differential equations [Akhmet & Turan, 2006], we rigorously prove the presence of chaos in dynamic equations on time scales (DETS). The results of the present study are based on the Li–Yorke definition of chaos. This is the first time in the literature that chaos is obtained for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1897
Author(s):  
Taher S. Hassan ◽  
Yuangong Sun ◽  
Amir Abdel Menaem

In this paper, the functional dynamic equation of second order is studied on an arbitrary time scale under milder restrictions without the assumed conditions in the recent literature. The Nehari, Hille, and Ohriska type oscillation criteria of the equation are investigated. The presented results confirm that the study of the equation in this formula is superior to other previous studies. Some examples are addressed to demonstrate the finding.


2007 ◽  
Vol 14 (4) ◽  
pp. 597-606
Author(s):  
Hassan A. Agwo

Abstract In this paper we obtain some new oscillation criteria for the second order nonlinear neutral delay dynamic equation (𝑥(𝑡) – 𝑝(𝑡)𝑥(𝑡 – τ 1))ΔΔ + 𝑞(𝑡)𝑓(𝑥(𝑡 – τ 2)) = 0, on a time scale 𝕋. Moreover, a new sufficient condition for the oscillation sublinear equation (𝑥(𝑡) – 𝑝(𝑡)𝑥(𝑡 – τ 1))″ + 𝑞(𝑡)𝑓(𝑥(𝑡 – τ 2)) = 0, is presented, which improves other conditions and an example is given to illustrate our result.


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Shihuang Hong ◽  
Jing Gao ◽  
Yingzi Peng

A class of new nonlinear impulsive set dynamic equations is considered based on a new generalized derivative of set-valued functions developed on time scales in this paper. Some novel criteria are established for the existence and stability of solutions of such model. The approaches generalize and incorporate as special cases many known results for set (or fuzzy) differential equations and difference equations when the time scale is the set of the real numbers or the integers, respectively. Finally, some examples show the applicability of our results.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Haidong Liu ◽  
Puchen Liu

By means of novel analytical techniques, we have established several new oscillation criteria for the generalized Emden-Fowler dynamic equation on a time scale𝕋, that is,(r(t)|ZΔ(t)|α-1ZΔ(t))Δ+f(t,x(δ(t)))=0, with respect to the case∫t0∞r-1/α(s)Δs=∞and the case∫t0∞r-1/α(s)Δs<∞, whereZ(t)=x(t)+p(t)x(τ(t)),  αis a constant,|f(t,u)|⩾q(t)|uβ|,βis a constant satisfyingα⩾β>0, andr,p, andqare real valued right-dense continuous nonnegative functions defined on𝕋. Noting the parameter valueαprobably unequal toβ, our equation factually includes the existing models as special cases; our results are more general and have wider adaptive range than others' work in the literature.


Sign in / Sign up

Export Citation Format

Share Document