scholarly journals Li–Yorke Chaos in Hybrid Systems on a Time Scale

2015 ◽  
Vol 25 (14) ◽  
pp. 1540024 ◽  
Author(s):  
Marat Akhmet ◽  
Mehmet Onur Fen

By using the reduction technique to impulsive differential equations [Akhmet & Turan, 2006], we rigorously prove the presence of chaos in dynamic equations on time scales (DETS). The results of the present study are based on the Li–Yorke definition of chaos. This is the first time in the literature that chaos is obtained for DETS. An illustrative example is presented by means of a Duffing equation on a time scale.

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Shihuang Hong ◽  
Jing Gao ◽  
Yingzi Peng

A class of new nonlinear impulsive set dynamic equations is considered based on a new generalized derivative of set-valued functions developed on time scales in this paper. Some novel criteria are established for the existence and stability of solutions of such model. The approaches generalize and incorporate as special cases many known results for set (or fuzzy) differential equations and difference equations when the time scale is the set of the real numbers or the integers, respectively. Finally, some examples show the applicability of our results.


2018 ◽  
Vol 68 (6) ◽  
pp. 1397-1420 ◽  
Author(s):  
Chao Wang ◽  
Ravi P. Agarwal ◽  
Donal O’Regan

Abstract In this paper, by using the concept of changing-periodic time scales and composition theorem of time scales introduced in 2015, we establish a local phase space for functional dynamic equations with infinite delay (FDEID) on an arbitrary time scale with a bounded graininess function μ. Through Krasnoseľskiĭ’s fixed point theorem, some sufficient conditions for the existence of local-periodic solutions for FDEID are established for the first time. This research indicates that one can extract a local-periodic solution for dynamic equations on an arbitrary time scale with a bounded graininess function μ through some index function.


2021 ◽  
Vol 25 (1) ◽  
pp. 123-136
Author(s):  
Cherif Benaissa ◽  
Ladrani Zohra

We introduce new properties of Riemann-Liouville fractional integral and derivative on time scales. As well as sufficient conditions for existence and uniqueness of solution to an initial value problem for a class differential equations on time scales.


2019 ◽  
Vol 267 (7) ◽  
pp. 4192-4223 ◽  
Author(s):  
M. Federson ◽  
R. Grau ◽  
J.G. Mesquita ◽  
E. Toon

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Mugen Huang ◽  
Kunwen Wen

As the unification and development of impulsive differential equations and difference equations, impulsive dynamic equations on time scales are a powerful tool to simulate the natural and social phenomena. In this paper, we study the interval oscillation of a type of forced second-order nonlinear impulsive dynamic equations with changing signs coefficients. By using the Riccati transformation technique, we obtain some new interval oscillation criteria, based only on information of a sequence of subintervals of positive axis. In addition, we provide an example to illustrate the use of our oscillatory results.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Haidong Liu ◽  
Puchen Liu

By means of novel analytical techniques, we have established several new oscillation criteria for the generalized Emden-Fowler dynamic equation on a time scale𝕋, that is,(r(t)|ZΔ(t)|α-1ZΔ(t))Δ+f(t,x(δ(t)))=0, with respect to the case∫t0∞r-1/α(s)Δs=∞and the case∫t0∞r-1/α(s)Δs<∞, whereZ(t)=x(t)+p(t)x(τ(t)),  αis a constant,|f(t,u)|⩾q(t)|uβ|,βis a constant satisfyingα⩾β>0, andr,p, andqare real valued right-dense continuous nonnegative functions defined on𝕋. Noting the parameter valueαprobably unequal toβ, our equation factually includes the existing models as special cases; our results are more general and have wider adaptive range than others' work in the literature.


2016 ◽  
Vol 66 (3) ◽  
Author(s):  
Xin Wu ◽  
Taixiang Sun

AbstractIn this paper, we study the oscillation criteria of the following higher order nonlinear delay dynamic equationon an arbitrary time scalewith


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Erbil Çetin ◽  
F. Serap Topal

Let be a periodic time scale in shifts . We use a fixed point theorem due to Krasnosel'skiĭ to show that nonlinear delay in dynamic equations of the form , has a periodic solution in shifts . We extend and unify periodic differential, difference, -difference, and -difference equations and more by a new periodicity concept on time scales.


Sign in / Sign up

Export Citation Format

Share Document