Nonconforming time discretization based on Robin transmission conditions for the Stokes–Darcy system

2022 ◽  
Vol 413 ◽  
pp. 126602
Author(s):  
Thi-Thao-Phuong Hoang ◽  
Hemanta Kunwar ◽  
Hyesuk Lee
Author(s):  
Jesús F. Águila ◽  
Vanessa Montoya ◽  
Javier Samper ◽  
Luis Montenegro ◽  
Georg Kosakowski ◽  
...  

AbstractSophisticated modeling of the migration of sorbing radionuclides in compacted claystones is needed for supporting the safety analysis of deep geological repositories for radioactive waste, which requires robust modeling tools/codes. Here, a benchmark related to a long term laboratory scale diffusion experiment of cesium, a moderately sorbing radionuclide, through Opalinus clay is presented. The benchmark was performed with the following codes: CORE2DV5, Flotran, COMSOL Multiphysics, OpenGeoSys-GEM, MCOTAC and PHREEQC v.3. The migration setup was solved with two different conceptual models, i) a single-species model by using a look-up table for a cesium sorption isotherm and ii) a multi-species diffusion model including a complex mechanistic cesium sorption model. The calculations were performed for three different cesium boundary concentrations (10−3, 10−5, 10−7 mol / L) to investigate the models/codes capabilities taking into account the nonlinear sorption behavior of cesium. Generally, good agreement for both single- and multi-species benchmark concepts could be achieved, however, some discrepancies have been identified, especially near the boundaries, where code specific spatial (and time) discretization had to be improved to achieve better agreement at the expense of longer computation times. In addition, the benchmark exercise yielded useful information on code performance, setup options, input and output data management, and post processing options. Finally, the comparison of single-species and multi-species model concepts showed that the single-species approach yielded generally earlier breakthrough, because this approach accounts neither for cation exchange of Cs+ with K+ and Na+, nor K+ and Na+ diffusion in the pore water.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 461
Author(s):  
Kenta Oishi ◽  
Yoshihiro Shibata

In this paper, we consider the motion of incompressible magnetohydrodynamics (MHD) with resistivity in a domain bounded by a free surface. An electromagnetic field generated by some currents in an external domain keeps an MHD flow in a bounded domain. On the free surface, free boundary conditions for MHD flow and transmission conditions for electromagnetic fields are imposed. We proved the local well-posedness in the general setting of domains from a mathematical point of view. The solutions are obtained in an anisotropic space Hp1((0,T),Hq1)∩Lp((0,T),Hq3) for the velocity field and in an anisotropic space Hp1((0,T),Lq)∩Lp((0,T),Hq2) for the magnetic fields with 2<p<∞, N<q<∞ and 2/p+N/q<1. To prove our main result, we used the Lp-Lq maximal regularity theorem for the Stokes equations with free boundary conditions and for the magnetic field equations with transmission conditions, which have been obtained by Frolova and the second author.


Author(s):  
Jonas Zeifang ◽  
Andrea Beck

AbstractConsidering droplet phenomena at low Mach numbers, large differences in the magnitude of the occurring characteristic waves are presented. As acoustic phenomena often play a minor role in such applications, classical explicit schemes which resolve these waves suffer from a very restrictive timestep restriction. In this work, a novel scheme based on a specific level set ghost fluid method and an implicit-explicit (IMEX) flux splitting is proposed to overcome this timestep restriction. A fully implicit narrow band around the sharp phase interface is combined with a splitting of the convective and acoustic phenomena away from the interface. In this part of the domain, the IMEX Runge-Kutta time discretization and the high order discontinuous Galerkin spectral element method are applied to achieve high accuracies in the bulk phases. It is shown that for low Mach numbers a significant gain in computational time can be achieved compared to a fully explicit method. Applications to typical droplet dynamic phenomena validate the proposed method and illustrate its capabilities.


Sign in / Sign up

Export Citation Format

Share Document