scholarly journals The effect of time discretization on the propeller hydrodynamic performance simulation in self-propulsion and open water conditions

2021 ◽  
Vol 1834 (1) ◽  
pp. 012008
Author(s):  
Yang Fan ◽  
Chen Kunpeng ◽  
Chen Weimin ◽  
Dong Guoxiang
Author(s):  
Pengfei Liu ◽  
Ayhan Akinturk ◽  
Moqin He ◽  
Mohammed Fakhrul Islam ◽  
Brian Veitch

Fluid-structure interaction between an ice sheet on the water surface and a podded R-Class propeller was examined and analyzed in terms of numerical simulation using a newly enhanced unsteady time-domain, multiple body panel method model. The numerical model was validated and verified and also checked against various previous in-house experimental measurements. The simulation was performed in a real unsteady case, that is, the ice piece stands still and the podded propeller moves and approaches the ice piece until collision occurs. Experimental data were taken from a previous cavitation tunnel test program for a bare R-Class ice breaker propeller under open water conditions, for the R-Class propeller approaching a blade-leading-edge contoured large size ice block under the proximity condition, and from an ice tank test program for a tractor type podded/strutted R-Class propeller under open water conditions. Comparison between experimental and numerical results was made. A general agreement was obtained. The magnitude of force fluctuations during the interaction increased significantly at the instant immediately before the impact between the propeller blades and the ice piece.


Author(s):  
Pengfei Liu ◽  
Ayhan Akinturk ◽  
Moqin He ◽  
Mohammed Fakhrul Islam ◽  
Brian Veitch

Fluid-structure interaction between an ice sheet on the water surface and a podded R-Class propeller was examined and analyzed in terms of numerical simulation using a newly enhanced unsteady time-domain, multiple body panel method model. The numerical model was validated and verified and also checked against various previous in-house experimental measurements. The simulation was performed in a real unsteady case, that is, the ice piece stands still and the podded propeller moves and approaches the ice piece until collision occurs. Experimental data were taken from a previous cavitation tunnel test program for a bare R-Class ice breaker propeller under open water conditions, for the R-Class propeller approaching a blade-leading-edge contoured large size ice block under the proximity condition, and from an ice tank test program for a tractor type podded/strutted R-Class propeller under open water conditions. Comparison between experimental and numerical results was made. A general agreement was obtained. The magnitude of force fluctuations during the interaction increased significantly at the instant immediately before the impact between the propeller blades and the ice piece.


1970 ◽  
Vol 4 (2) ◽  
pp. 57-71 ◽  
Author(s):  
Mohammed F Islam ◽  
Brian Veitch ◽  
Pengfei Liu

This paper describes a research program on podded propulsors that combines parallel developments in numerical prediction methods and experimental evaluation. Amongst the hydrodynamic issues that have been identified and addressed are questions regarding the effects of hub taper angle, pod-strut configurations, static azimuthing conditions, pod-strut interactions, gap pressure, pod gap and pod-strut geometry on podded propulsors' performance. On the experimental side, a pod dynamometer system consisting of a six-component global dynamometer and a three-component pod dynamometer were designed, manufactured and used to perform measurements on propeller thrust and torque and unit forces and moments in the three orthogonal directions in pusher and puller configurations in open water conditions. Four propellers with the same blade sections but different hub taper angles were designed and used to fit with eighteen pod-strut shells. Among the shells, two pod-strut models were based on the average dimensions of commercial pods and used to study the hub angle, pod configuration, pod gap, gap pressure and azimuthing conditions effect on propulsive performance. The other sixteen pods were designed and manufactured to study the effect of five geometric parameters on hydrodynamic performance using a design of experiments technique. In another study, an experimental method was implemented in a cavitation tunnel to evaluate the wake/strut interaction of a podded propeller model. All of the measurements showed consistency.DOI: http://dx.doi.org/10.3329/jname.v4i2.989 Journal of Naval Architecture and Marine Engineering Vol.4(2) 2007 p 57-71


Author(s):  
Hasan Sajedi ◽  
Miralam Mahdi

Marine propeller always operates in the wake of a vehicle (ship, torpedo, submarine) but (due to the high computational cost of simulating vehicle and propeller simultaneously) to investigate the propeller geometric parameters, simulations are usually performed in open-water conditions. In this article, using the computational fluid dynamics method with the control volume approach, the effect of the rake angle on the propeller performance and formation of cavitation in the uniform flow (open water) and the nonuniform flow (wake flow) was investigated. In the nonuniform condition, the array of plates was used to simulate wake at upstream propeller. For uniform flow, steady solution scheme was adopted and for nonuniform flow unsteady solution scheme was adopted, and a moving mesh zone was generated around the propeller. To simulate cavitation a multiphase mixture flow, the Reynolds-averaged Navier–Stokes method was used and modeled by Schnerr Sauer's cavitation model. First, the E779a propeller model for numerical validation in the uniform flow and nonuniform flow was investigated. Numerical results were compared with the experimental result, and there was a good agreement between volume of the cavity, thrust, and torque coefficients. To study the effect of rake angle on the performance of B-series propellers, four models with different rake angles were modeled, and simulation was investigated behind the wake. The results of thrust, torque coefficients, and cavitation volume according to the flow parameters and cavitation number were presented as graphs. The results reveals that in the uniform flow, the rake angle has no significant effect on the propeller performance, but behind the wake flow, increase of rake causes to reduce the force applied to the propeller blades, cavitation volume, and pressure fluctuations on the propeller.


2019 ◽  
Vol 20 (6) ◽  
pp. 617
Author(s):  
Mohammad Bakhtiari ◽  
Hassan Ghassemi

Marine cycloidal propeller (MCP) is a special type of marine propulsors that provides high maneuverability for marine vessels. In a MCP, the propeller axis of rotation is perpendicular to the direction of thrust force. It consists of a number of lifting blade. Each blade rotates about the propeller axis and simultaneously pitches about its own axis. The magnitude and direction of thrust force can be adjusted by controlling the propeller pitch. Voith-Schneider propeller (VSP) is a low-pitch MCP with pure cycloidal blade motion allowing fast, accurate, and stepless control of thrust magnitude and direction. Generally, low-pitch cycloidal propellers are used in applications with low speed maneuvering requirements, such as tugboats, minesweepers, etc. In this study, a 2.5D numerical method based on unsteady RANS equations with SST k-ω turbulent model was implemented to predict the open water hydrodynamic performance of a VSP for different propeller pitches and blade thicknesses. The numerical method was validated against the experimental data before applying to VSP. The results showed that maximum open water efficiency of a VSP is enhanced by increasing the propeller pitch. Furthermore, the effect of blade thickness on open water efficiency is different at various advance coefficients, so that the maximum efficiency produced by the VSP decreases with increasing blade thickness at different propeller pitches.


2009 ◽  
Vol 407 (8) ◽  
pp. 2980-2988 ◽  
Author(s):  
Jennifer A. Graydon ◽  
Craig A. Emmerton ◽  
Lance F.W. Lesack ◽  
Erin N. Kelly

2015 ◽  
Vol 74 (5) ◽  
Author(s):  
M. Nakisa ◽  
A. Maimun ◽  
Yasser M. Ahmed ◽  
F. Behrouzi ◽  
Jaswar Jaswar ◽  
...  

This paper numerically investigated mesh refinement method in order to obtain a mesh independent solution for a marine propeller working in open water condition.Marine propeller blade geometries, especially of LNG carriers, are very complicated and determining the hydrodynamic performance of these propellers using experimental work is very expensive, time consuming and has many difficulties in calibration of marine laboratory facilities. The present research workhas focused on the hydrodynamic propeller coefficients of a LNG carrier Tanaga class such as Kt, Kq and η, with respect to the different advance coefficient (j). Finally, the results of numerical simulation in different mesh density that have been calculated based on RANS (Reynolds Averaged Navier Stocks) equations, were compared with existing experimental results, followed by analysis and discussion sections. As a result the maximum hydrodynamic propeller efficiency occurred when j=0.84.


2014 ◽  
Vol 82 (3) ◽  
pp. 477-489 ◽  
Author(s):  
Jeffrey S. Pigati ◽  
Ian M. Miller ◽  
Kirk R. Johnson ◽  
Jeffrey S. Honke ◽  
Paul E. Carrara ◽  
...  

AbstractThe geologic setting of the Ziegler Reservoir fossil site is somewhat unusual — the sediments containing the Pleistocene fossils were deposited in a lake on top of a ridge. The lake basin was formed near Snowmass Village, Colorado (USA) when a glacier flowing down Snowmass Creek Valley became thick enough to overtop a low point in the eastern valley wall and entered the head of Brush Creek Valley. When the glacier retreated at about 155–130 ka, near the end of Marine Oxygen Isotope Stage 6, the Brush Creek Valley lobe left behind a moraine that impounded a small alpine lake. The lake was initially ~ 10 m deep and appears to have been highly productive during most of its existence, based on the abundant and exquisitely preserved organic material present in the sediments. Over time, the basin slowly filled with (mostly) eolian sediment such that by ~ 87 ka it contained a marsh or wetland rather than a true lake. Open-water conditions returned briefly between ~ 77 and 55 ka before the impoundment was finally breached to the east, establishing ties with the Brush Creek drainage system and creating an alpine meadow that persisted until historic times.


2013 ◽  
Vol 437 ◽  
pp. 32-35
Author(s):  
Li Jian Ou ◽  
Nan Huo Wu ◽  
De Yu Li

Firstly, the calculated model was created in UG and GAMBIT, and then the Moving Mesh method was adopted to simulate thrust and torque of ducted propeller using FLUENT in the open water. The thrust, torque and bearing force of ducted propeller in three different wake fields were calculated. And the influence on the performance of ducted propeller by the wake fields was analyzed.


Sign in / Sign up

Export Citation Format

Share Document