scholarly journals Plasticity in behavioural responses and resistance to temperature stress in Musca domestica

2015 ◽  
Vol 99 ◽  
pp. 123-130 ◽  
Author(s):  
Anders Kjærsgaard ◽  
Wolf U. Blanckenhorn ◽  
Cino Pertoldi ◽  
Volker Loeschcke ◽  
Christian Kaufmann ◽  
...  
1992 ◽  
Vol 82 (4) ◽  
pp. 471-478 ◽  
Author(s):  
Z.A. Freeman ◽  
D.B Pinniger

AbstractA study was carried out to investigate the behavioural components of resistance in the Standlake strain of Musca domestica Linnaeus. The flies were collected from a poultry unit where azamethiphos spray-on-bait (Alfacron), had been regularly used to control the fly population. A no-choice laboratory cage test was used to observe the responses of the Standlake resistant strain to baits and compare it with two other strains namely, Sparsholt resistant and Cooper susceptible. The baits used were, Alfacron, sugar and analytical grade azamethiphos, sugar alone, and a blank target as control. Only female flies were used, each strain was exposed separately to each bait over a 50 minute period and the responses were recorded with a datalogger. The responses (per fly) recorded during each test period were: the number of visits to a bait; the time spent on a bait; the number of feeds and time spent feeding on the bait defined as the number of proboscis contacts and the length of time of proboscis contact with the bait. Knockdown of flies was recorded at the end of each test. All strains showed differences in their responses to baits. The Standlake strain showed the greatest difference to responses to Alfacron, with inhibition of proboscis extension when flies landed on the bait and a lower proboscis contact when extended, resulting in fewer flies being knocked down by Alfacron than by the sugar and azamethiphos bait. This suggested that inhibition of feeding on the Alfacron bait by the Standlake strain was caused by formulation components or contaminants and not the active insecticide ingredient, azamethiphos.


1972 ◽  
Vol 104 (12) ◽  
pp. 1963-1965 ◽  
Author(s):  
Ajai Mansingh ◽  
Robert W. Steele ◽  
B. N. Smallman ◽  
Otto Meresz ◽  
Cecilia Mozogai

AbstractThe effects on the house fly, Musca domestica (L.), of a series of cis-9 alkenes containing 19–25 carbon atoms were investigated. An unexpectedly wide spectrum of these homologous hydrocarbons showed biological activity. Synergism and interesting changes in behavioural responses (excitement, mating, and orientation) varying with structure and concentration were observed.


2019 ◽  
Vol 10 (2) ◽  
pp. 44-50
Author(s):  
Rinaldi Daswito ◽  
Rima Folentia ◽  
M Yusuf MF

One of the diseases that can be transmitted by flies is diarrhea. Green betel leaf contains essential oils, chavicol, arecoline, phenol, and tannins which function as plant-based insecticides. This study aimed to determine the effectiveness of green betel leaf extract (Piper betel) as a plant-based insecticide on the number of mortality of house flies (Musca domestica). The research was an experimental study used After Only Design used the One Way Anova test with a 95% confidence level. The samples used were 360 ​​house flies. Each treatment of 30 house flies with 4 repetitions and used three concentrations of green betel leaf extract (25%, 50%, 75%). The study was conducted at the Chemistry and Microbiology Laboratory of Health Polytechnic Tanjungpinang, while the location of the fly collection was at the Tokojo Garbage Collection Station in Bintan Regency. The number of mortality of house flies at a concentration of 25% was 81 heads (67.5%), 50% concentrations were 93 heads (77.5%), and at a concentration of 75% were 103 heads (85.83%). There was an effect of green betel leaf extract on the mortality of house flies (p-value 0.0001 <0.05) with the most effective concentration of 75%. Further research is needed to obtain a finished product utilizing green betel leaf extract as a vegetable insecticide, especially in controlling the fly vector. Need further research on the use of green betel leaf extract as a vegetable insecticide controlling the fly vector by taking into account the amount of spraying and the age of the fly.   Keywords: Green betel leaf extract , organic insecticide, houseflies


2020 ◽  
pp. 28-30
Author(s):  
Mikhail A. Levchenko ◽  

The control of houseflies (Musca domestica L.) in veterinary surveillance premises is an important measure for the welfare of animals against infectious and invasive diseases. For this purpose, the most effective chemical insecticides are used. To prevent possible resistance to them, bait insecticides with two active binary ingredients from different chemical classes are used. The work was carried out in the laboratory of the Tyumen Scientific Center and in the production conditions of ZAO Pyshminskaya Poultry Farm. This material presents the main stages in the development of a prototype of the insecticidal bait Mukhnet AX containing two insecticides: 1.5% acetamiprid and 6% chlorfenapir. For this purpose, adults of houseflies Musca domestica L. 3-5 days old were used. Under laboratory conditions, effective rational doses of the above insecticides were determined by group feeding, feeding and by the method of assessing food insecticidal baits when fighting flies from 0.00002 to 4% concentrations. According to the results of laboratory studies, it was found that the optimal doses causing 100% death of insects were 0.5% for acetamiprid and 2% for chlorfenapir. The insecticidal efficiency of the developed bait Mukhnet AH against flies in production conditions on the first day after the treatment of the livestock building was 91.25%. The insecticidal effect of the measures taken lasted for at least 6 days. The restoration of the number to the previous level of the number of insects occurred after 10 days. Based on the results obtained, the Method of using the composition of an insecticidal bait agent in the fight against Musca domestica was proposed and patented.


Sign in / Sign up

Export Citation Format

Share Document