Effect of dried or green herbage on vaccenic acid and conjugated linoleic acid production during in vitro rumen fermentation

2008 ◽  
Vol 140 (1-2) ◽  
pp. 207-213 ◽  
Author(s):  
A. Buccioni ◽  
M. Antongiovanni ◽  
F. Petacchi ◽  
M. Mele ◽  
A. Serra ◽  
...  
2020 ◽  
Vol 37 (2) ◽  
pp. 132
Author(s):  
Neeru Jaglan ◽  
Sachin Kumar ◽  
Prasanta Kumar Choudhury ◽  
Bhawna Tyagi ◽  
P.S. Banakar ◽  
...  

2013 ◽  
Vol 12 (6) ◽  
pp. 516-520 ◽  
Author(s):  
Julakorn Panatuk ◽  
Suthipong Uriyapongs ◽  
Chainarong Nawanukraw ◽  
Chirasak Phoemchala ◽  
Pitukpol Pornanake

2006 ◽  
Vol 95 (4) ◽  
pp. 688-695 ◽  
Author(s):  
Renaville Bénédicte ◽  
Anne Mullen ◽  
Fiona Moloney ◽  
Yvan Larondelle ◽  
Yves-Jacques Schneider ◽  
...  

Stearoyl-CoA desaturase (SCD) is a key enzyme that determines the composition and metabolic fate of ingested fatty acids, in particular the conversion of trans-vaccenic acid (TVA) to conjugated linoleic acid (CLA). The present study addressed the hypothesis that intestinal TVA absorption and biotransformation into CLA can be modulated by EPA and 3,10-dithia stearic acid (DSA) via altered SCD mRNA levels and desaturation indices (cis-9, trans-11-CLA:TVA and oleic acid:stearic acid ratios) in Caco-2 and T84 cells, two well-established in vitro models of the human intestinal epithelium. The study determined the effect of acute (3h with 0·3mm-EPA or 0·3mm-DSA) and acute-on-chronic (1 week with 0·03mm-EPA or -DSA, followed by respectively, 0·3mm-EPA or -DSA for 3h) treatments. In both cell lines, acute EPA treatment did not alter SCD desaturation indices, whereas the acute-on-chronic treatment affected these surrogate markers of SCD activity. This was associated with reduced sterol regulatory-element binding protein-1c and SCD mRNA levels. In contrast, acute and acute-on-chronic DSA treatments significantly reduced SCD desaturation indices without affecting SCD mRNA levels in Caco-2 cells. The present study on intestinal cells shows that the conversion rate of TVA to c9, t11-CLA is affected by other fatty acids present in the diet such as EPA, confirming previous observations in hepatic and mammary cell models.


2007 ◽  
Vol 2007 ◽  
pp. 26-26
Author(s):  
S.E. Grace ◽  
A.P. Moloney ◽  
D.A. Kenny

The myriad putative health benefits of conjugated linoleic acid (CLA) and in particular the cis-9, trans-11 isomer, have stimulated interest in increasing its concentration in food. Ruminant fat is the main dietary source of CLA for humans and CLA is produced in the rumen by incomplete biohydrogenation of dietary linoleic acid (LA). It is now accepted that most CLA is synthesised post-ruminally by desaturation of vaccenic acid (VA) produced during ruminal biohydrogenation of (LA) and linolenic acid (LNA) (Griinari et al., 2000). Enhancement of VA synthesis in the rumen is therefore an important element of strategies to increase CLA concentration in tissue. The objective of this experiment was to determine the effect of controlling the rate of release of oil from camelina seeds, a novel source of both LA and LNA, on the accumulation of intermediates during ruminal biohydrogenation.


2021 ◽  
Vol 20 (9) ◽  
pp. 1801-1809
Author(s):  
Mengwei Li ◽  
Faiz-ul Hassan ◽  
Lijuan Peng ◽  
Hossam Mahrous Ebeid ◽  
Zhenhua Tang ◽  
...  

Purpose: To investigate the effect of dietary supplementation of two omega fatty acids on in vitro rumen  fermentation, microbial populations, total gas and methane (CH4) production.Methods: Both linoleic and linolenic acids were supplemented at 0 (control), 1, 3, 5 and 7 % of dry matter (DM) in a ration with a high roughage to concentrate ratio (70: 30). Total gas and CH4  were measured at 3, 6, 9, 12 and 24 h of fermentation while pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) concentrations were measured at 24 h using buffalo rumen fluid in an in vitro batch culture system. Microbial populations were determined using 16S-rDNA gene primers by RT-PCR.Results: The results revealed that linoleic acid at 3, 5 and 7 % decreased the concentration of NH3-N (p< 0.05) but linolenic acid at 5 and 7 % increased NH3-N (p < 0.05). A linear decrease (p <0.001) in acetate and butyrate, coupled with linear increase (p <0.001) in propionate was observed in response to treatment. Furthermore, supplementation of 3, 5 and 7 % of both fatty acids linearly (p < 0.001) decreased total gas and CH4 production when compared to the control. The addition of linoleic acid linearly (p < 0.001) decreased the number of protozoa without affecting methanogens, while linolenic acid linearly and quadratically (p < 0.001) reduced the population of both protozoa and methanogens (p < 0.05).Conclusion: Linolenic acid is more effective at a 3 % level in reducing methane production (up to 63 %) in high roughage diets.


Sign in / Sign up

Export Citation Format

Share Document