scholarly journals Dietary treatment with omega fatty acids mediates in vitro rumen fermentation kinetics and reduce methane emission in water buffalo

2021 ◽  
Vol 20 (9) ◽  
pp. 1801-1809
Author(s):  
Mengwei Li ◽  
Faiz-ul Hassan ◽  
Lijuan Peng ◽  
Hossam Mahrous Ebeid ◽  
Zhenhua Tang ◽  
...  

Purpose: To investigate the effect of dietary supplementation of two omega fatty acids on in vitro rumen  fermentation, microbial populations, total gas and methane (CH4) production.Methods: Both linoleic and linolenic acids were supplemented at 0 (control), 1, 3, 5 and 7 % of dry matter (DM) in a ration with a high roughage to concentrate ratio (70: 30). Total gas and CH4  were measured at 3, 6, 9, 12 and 24 h of fermentation while pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) concentrations were measured at 24 h using buffalo rumen fluid in an in vitro batch culture system. Microbial populations were determined using 16S-rDNA gene primers by RT-PCR.Results: The results revealed that linoleic acid at 3, 5 and 7 % decreased the concentration of NH3-N (p< 0.05) but linolenic acid at 5 and 7 % increased NH3-N (p < 0.05). A linear decrease (p <0.001) in acetate and butyrate, coupled with linear increase (p <0.001) in propionate was observed in response to treatment. Furthermore, supplementation of 3, 5 and 7 % of both fatty acids linearly (p < 0.001) decreased total gas and CH4 production when compared to the control. The addition of linoleic acid linearly (p < 0.001) decreased the number of protozoa without affecting methanogens, while linolenic acid linearly and quadratically (p < 0.001) reduced the population of both protozoa and methanogens (p < 0.05).Conclusion: Linolenic acid is more effective at a 3 % level in reducing methane production (up to 63 %) in high roughage diets.

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Yichong Wang ◽  
Sijiong Yu ◽  
Yang Li ◽  
Shuang Zhang ◽  
Xiaolong Qi ◽  
...  

Nutritional strategies can be employed to mitigate greenhouse emissions from ruminants. This article investigates the effects of polyphenols extracted from the involucres of Castanea mollissima Blume (PICB) on in vitro rumen fermentation. Three healthy Angus bulls (350 ± 50 kg), with permanent rumen fistula, were used as the donors of rumen fluids. A basic diet was supplemented with five doses of PICB (0%–0.5% dry matter (DM)), replicated thrice for each dose. Volatile fatty acids (VFAs), ammonia nitrogen concentration (NH3-N), and methane (CH4) yield were measured after 24 h of in vitro fermentation, and gas production was monitored for 96 h. The trial was carried out over three runs. The results showed that the addition of PICB significantly reduced NH3-N (p < 0.05) compared to control. The 0.1%–0.4% PICB significantly decreased acetic acid content (p < 0.05). Addition of 0.2% and 0.3% PICB significantly increased the propionic acid content (p < 0.05) and reduced the acetic acid/propionic acid ratio, CH4 content, and yield (p < 0.05). A highly significant quadratic response was shown, with increasing PICB levels for all the parameters abovementioned (p < 0.01). The increases in PICB concentration resulted in a highly significant linear and quadratic response by 96-h dynamic fermentation parameters (p < 0.01). Our results indicate that 0.2% PICB had the best effect on in-vitro rumen fermentation efficiency and reduced greenhouse gas production.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2014 ◽  
Vol 59 (No. 10) ◽  
pp. 450-459 ◽  
Author(s):  
M. Gunal ◽  
A. Ishlak ◽  
A.A. AbuGhazaleh ◽  
W. Khattab

The effects of adding essential oils (EO) at different levels (125, 250, 500 mg/l) on rumen fermentation and biohydrogenation were examined in a rumen batch culture study. Treatments were: control without EO (CON), control with anise oil (ANO), cedar wood oil (CWO), cinnamon oil (CNO), eucalyptus oil (EUO), and tea tree oil (TEO). Essential oils, each dissolved in 1 ml of ethanol, were added to the culture flask containing 40 ml of buffer solution, 2 ml of reduction solution, 10 ml of rumen fluid, 25 mg of soybean oil, and 0.5 g of the diet. After 24 h of incubation in a water batch at 39&deg;C, three samples were collected from each flask and analyzed for ammonia-N, volatile fatty acids (VFA), and fatty acids (FA). Expect for CNO, the proportions of acetate, propionate, and acetate to propionate ratios were not affected (P &gt; 0.05) by EO addition. Addition of CWO, CNO, and TEO reduced total VFA concentrations (P &lt; 0.05) regardless of dose level. The ammonia-N concentration was greater in cultures incubated with EO regardless of dose level. Compared with the CON, the concentrations of C18:0 and trans C18:1 were reduced (P &lt; 0.05) with EO addition regardless of dose level. Compared with the CON, the concentration of linoleic acid was greater (P &lt; 0.05) when EO were added at 500&nbsp;mg/l. EO tested in this study had no effects on VFA profile but significantly reduced the formation of biohydrogenation products (C18:0 and trans C18:1).


1980 ◽  
Vol 63 (2) ◽  
pp. 305-312 ◽  
Author(s):  
T. Senshu ◽  
K. Nakamura ◽  
A. Sawa ◽  
H. Miura ◽  
T. Matsumoto

2021 ◽  
Vol 44 (2) ◽  
pp. 152-159
Author(s):  
N. C. Tiven ◽  
L. Hartati ◽  
T. M. Simanjorang

This study was conducted to determine the effect of liquid smoke as a fat protector on unsaturated fatty acids (UFAs) and its effect on rumen fermentation characteristics and microbial activity. Crude palm oil (CPO) was mixed with Prosteo skim milk (1:2), then divided into three treatments i.e., crude palm oil without protection by liquid smoke as a control (P0), crude palm oil protected by 2.5% of liquid smoke (P1), and crude falm oil protected by 5.0% of liquid smoke (P2). For in vitro testing, 300 mg of the feed substrate (elephant grass and bran with the ratio of 60:40) was added with 5% of each crude palm oil preparation of P0, P1, and P2 and put in a fermentor syringe. Then, 30 mL of the mixture of rumen fluid and buffer-minerals solution (1:2) was added into each syringe fermentor and flushed with CO2. The fermentor syringes were incubated in a water bath at 39ᵒC for 48 hours. Variables measured were fatty acid composition, fermentation characteristics, and rumen microbial activity. The data were analyzed by the analysis of variance with a completely randomized design. The results showed that the protection of CPO with liquid smoke in P1 and P2 groups decreased saturated fatty acids (SFAs), but increased (p<0.01) monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), and CMCase activity. Protection of CPO with 2.5% of liquid smoke (P1) significantly increased (p<0.01) fermentation characteristics (NH3 content and pH). It can be concluded that the use of 2.5% of liquid smoke has a better effect on feed fats protection, because it can reduce hydrogenation, increase UFAs, and has no negative effects on fermentation characteristics and microbial activity.


1951 ◽  
Vol 28 (1) ◽  
pp. 74-82
Author(s):  
F. V. GRAY ◽  
A. F. PILGRIM ◽  
R. A. WELLER

1. When wheaten hay and lucerne hay were fermented by organisms from the rumen of the sheep it was necessary to employ a large inoculum of rumen fluid in order to reproduce the rumen fermentation in vitro. With a small inoculum the fermentation did not conform to the known characteristics of the natural process. 2. Products per kilogram of wheaten hay fermented in vitro were: fatty acids 200-250 g.--acetic acid 41%, propionic acid 43% and butyric acid 16% (by weight); methane 15 l. Products per kilogram of lucerne hay were: fatty acids 250-300 g.--acetic acid 53%, propionic acid 29% and butyric acid 18% (by weight); methane 20 l. 3. The findings support the view that, owing to the more rapid absorption of propionic than of the other acids from the rumen, the proportion of this acid remaining in the rumen fluid is considerably less than the proportion actually formed in the fermentation.


Sign in / Sign up

Export Citation Format

Share Document