Effects of Clostridium butyricum on production performance and intestinal absorption function of laying hens in the late phase of production

2020 ◽  
Vol 264 ◽  
pp. 114476
Author(s):  
Wei-wei Wang ◽  
Jing Wang ◽  
Hai-jun Zhang ◽  
Shu-geng Wu ◽  
Guang-hai Qi
2019 ◽  
Author(s):  
Weiwei Wang ◽  
Jing Wang ◽  
Haijun Zhang ◽  
Shugeng Wu ◽  
Guanghai Qi

Abstract Background: The compromised performance of laying hens in the late phase of production relative to the peak production was thought to be associated with the impairment of intestinal functionality, which plays essential roles in contributing to their overall health and production performance. In the present study, RNA sequencing was used to investigate differences in the expression profile of intestinal functionality-related genes and associated pathways between laying hens in the late phase and peak phase of production. Results : A total of 104 upregulated genes with 190 downregulated genes were identified in the ileum (the distal small intestine) of laying hens in the late phase of production compared to those at peak production. These upregulated genes were found to be enriched in little KEGG pathway, however, the downregulated genes were enriched in the pathways of PPAR signaling pathway, oxidative phosphorylation and glutathione metabolism. Besides, these downregulated genes were mapped to several GO clusters in relation to lipid metabolism, electron transport of respiratory chain, and oxidation resistance. Similarly, there were lower activities of total superoxide dismutase, glutathione S-transferase and Na + /K + -ATPase, and reductions of total antioxidant capacity and ATP level, along with an elevation in malondialdehyde content in the ileum of laying hens in the late phase of production as compared with those at peak production. Conclusions: The intestine of laying hens in the late phase of production were predominantly characterized by a disorder of lipid metabolism, concurrent with impairments of energy production and antioxidant property. This study uncovers the mechanism underlying differences between the intestinal functionality of laying hens in the late phase and peak phase of production, thereby providing potential targets for the genetic control or dietary modulation of intestinal hypofunction of laying hens in the late phase of production.


2019 ◽  
Author(s):  
Weiwei Wang ◽  
Jing Wang ◽  
Haijun Zhang ◽  
Shugeng Wu ◽  
Guanghai Qi

Abstract Background: The compromised performance of laying hens in the late phase of production relative to the peak production was thought to be associated with the impairment of intestinal functionality, which plays essential roles in contributing to their overall health and production performance. In the present study, RNA sequencing was used to investigate differences in the expression profile of intestinal functionality-related genes and associated pathways between laying hens in the late phase and peak phase of production. Results : A total of 104 upregulated genes with 190 downregulated genes were identified in the ileum (the distal small intestine) of laying hens in the late phase of production compared to those at peak production. These upregulated genes were found to be enriched in little KEGG pathway, however, the downregulated genes were enriched in the pathways of PPAR signaling pathway, oxidative phosphorylation and glutathione metabolism. Besides, these downregulated genes were mapped to several GO clusters in relation to lipid metabolism, electron transport of respiratory chain, and oxidation resistance. Similarly, there were lower activities of total superoxide dismutase, glutathione S-transferase and Na + /K + -ATPase, and reductions of total antioxidant capacity and ATP level, along with an elevation in malondialdehyde content in the ileum of laying hens in the late phase of production as compared with those at peak production. Conclusions: The intestine of laying hens in the late phase of production were predominantly characterized by a disorder of lipid metabolism, concurrent with impairments of energy production and antioxidant property. This study uncovers the mechanism underlying differences between the intestinal functionality of laying hens in the late phase and peak phase of production, thereby providing potential targets for the genetic control or dietary modulation of intestinal hypofunction of laying hens in the late phase of production.


2019 ◽  
Author(s):  
Weiwei Wang ◽  
Jing Wang ◽  
Haijun Zhang ◽  
Shugeng Wu ◽  
Guanghai Qi

Abstract Background The compromised performance of laying hens in the late phase of production relative to the peak production was thought to be associated with the impairment of intestinal functionality, which plays essential roles in contributing to their overall health and production performance. In the present study, RNA sequencing was used to investigate differences in the expression profile of intestinal functionality-related genes and associated pathways between layers in the late phase and peak phase of production. Results A total of 104 upregulated genes with 190 downregulated genes were identified in the ileum of layers in the late phase of production compared to those at peak production. These upregulated genes were found to be enriched in little KEGG pathway, however, the downregulated genes were enriched in the pathways of PPAR signaling pathway, oxidative phosphorylation and glutathione metabolism. Besides, these downregulated genes were mapped to several GO clusters in relation to lipid metabolism, electron transport of respiratory chain, and oxidation resistance. Similarly, there were lower activities of total superoxide dismutase, glutathione S-transferase and Na+/K+-ATPase, and reductions of total antioxidant capacity and ATP level, along with an elevation in malondialdehyde content in the ileum of layers in the late phase of production as compared with those at peak production. Conclusions The intestine of layers in the late phase of production were predominantly characterized by a disorder of lipid metabolism, concurrent with impairments of energy production and antioxidant property. This study uncovers the mechanism underlying differences between the intestinal functionality of layers in the late phase and peak phase of production, thereby providing potential targets for the genetic control or dietary modulation of intestinal hypofunction of layers in the late phase of production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jia Feng ◽  
Mingyuan Lu ◽  
Jing Wang ◽  
Haijun Zhang ◽  
Kai Qiu ◽  
...  

Abstract Background Dietary essential oil (EO) supplementation can exert favorable effects on gut health in broilers. However, it is unknown whether EO could improve intestinal functions, consequently beneficial for egg performance and quality in late-phase laying hens. This study was aimed to investigate the potential effects of EO on production performance, egg quality, intestinal health and ileal microbiota of hens in the late phase of production. A total of 288 60-week-old Hy-line Brown laying hens were randomly divided into 4 groups and fed a basal diet (control) or basal diets supplemented with oregano EO at 100, 200 and 400 mg/kg (EO100, EO200 and EO400). Results Dietary EO supplementation resulted in a quadratic decrease (P < 0.05) in feed conversion ratio with lower (P < 0.05) feed conversion ratio in EO200 group than the control during weeks 9–12 and 1–12 of the trial. Compared to the control, EO addition resulted in higher (P < 0.05) eggshell thickness at the end of week. 4, 8 and 12 and higher (P < 0.05) chymotrypsin activity. There was a quadratic elevation (P < 0.05) in ileal chymotrypsin and lipase activity, along with a linear increase in villus height to crypt depth ratio. Quadratic declines (P < 0.05) in mRNA expression of IL-1β, TNF-α, IFN-γ and TLR-4, concurrent with a linear and quadratic increase (P < 0.05) in ZO-1 expression were identified in the ileum with EO addition. These favorable effects were maximized at medium dosage (200 mg/kg) of EO addition and intestinal microbial composition in the control and EO200 groups were assessed. Dietary EO addition increased (P < 0.05) the abundances of Burkholderiales, Actinobacteria, Bifidobacteriales, Enterococcaceae and Bacillaceae, whereas decreased Shigella abundance in the ileum. Conclusions Dietary EO addition could enhance digestive enzyme activity, improve gut morphology, epithelial barrier functions and modulate mucosal immune status by altering microbial composition, thus favoring feed efficiency and eggshell quality of late-phase laying hens.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei-wei Wang ◽  
Jing Wang ◽  
Hai-jun Zhang ◽  
Shu-geng Wu ◽  
Guang-hai Qi

Abstract Background The compromised performance of laying hens in the late phase of production relative to the peak production was thought to be associated with the impairment of intestinal functionality, which plays essential roles in contributing to their overall health and production performance. In the present study, RNA sequencing was used to investigate differences in the expression profile of intestinal functionality-related genes and associated pathways between laying hens in the late phase and peak phase of production. Results A total of 104 upregulated genes with 190 downregulated genes were identified in the ileum (the distal small intestine) of laying hens in the late phase of production compared to those at peak production. These upregulated genes were found to be enriched in little KEGG pathway, however, the downregulated genes were enriched in the pathways of PPAR signaling pathway, oxidative phosphorylation and glutathione metabolism. Besides, these downregulated genes were mapped to several GO clusters in relation to lipid metabolism, electron transport of respiratory chain, and oxidation resistance. Similarly, there were lower activities of total superoxide dismutase, glutathione S-transferase and Na+/K+-ATPase, and reductions of total antioxidant capacity and ATP level, along with an elevation in malondialdehyde content in the ileum of laying hens in the late phase of production as compared with those at peak production. Conclusions The intestine of laying hens in the late phase of production were predominantly characterized by a disorder of lipid metabolism, concurrent with impairments of energy production and antioxidant property. This study uncovers the mechanism underlying differences between the intestinal functionality of laying hens in the late phase and peak phase of production, thereby providing potential targets for the genetic control or dietary modulation of intestinal hypofunction of laying hens in the late phase of production.


2019 ◽  
Author(s):  
Weiwei Wang ◽  
Jing Wang ◽  
Haijun Zhang ◽  
Shugeng Wu ◽  
Guanghai Qi

Abstract Background The compromised performance of laying hens in the late phase of production relative to the peak production was thought to be associated with the impairment of intestinal functionality, which plays essential roles in contributing to their overall health and production performance. In the present study, RNA sequencing was used to investigate differences in the expression profile of intestinal functionality-related genes and associated pathways between layers in the late phase and peak phase of production. Results A total of 104 upregulated genes with 190 downregulated genes were identified in the ileum of layers in the late phase of production compared to those at peak production. These upregulated genes were found to be enriched in little KEGG pathway, however, the downregulated genes were enriched in the pathways of PPAR signaling pathway, oxidative phosphorylation and glutathione metabolism. Besides, these downregulated genes were mapped to several GO clusters in relation to lipid metabolism, electron transport of respiratory chain, and oxidation resistance. Similarly, there were lower activities of total superoxide dismutase, glutathione S-transferase and Na+/K+-ATPase, and reductions of total antioxidant capacity and ATP level, along with an elevation in malondialdehyde content in the ileum of layers in the late phase of production as compared with those at peak production. Conclusions The intestine of layers in the late phase of production were predominantly characterized by a disorder of lipid metabolism, concurrent with impairments of energy production and antioxidant property. This study uncovers the mechanism underlying differences between the intestinal functionality of layers in the late phase and peak phase of production, thereby providing potential targets for the genetic control or dietary modulation of intestinal hypofunction of layers in the late phase of production.


2019 ◽  
Author(s):  
Weiwei Wang ◽  
Jing Wang ◽  
Haijun Zhang ◽  
Shugeng Wu ◽  
Guanghai Qi

Abstract Background: The compromised performance of laying hens in the late phase of production relative to the peak production was thought to be associated with the impairment of intestinal functionality, which plays essential roles in contributing to their overall health and production performance. In the present study, RNA sequencing was used to investigate differences in the expression profile of intestinal functionality-related genes and associated pathways between laying hens in the late phase and peak phase of production. Results : A total of 104 upregulated genes with 190 downregulated genes were identified in the ileum (the distal small intestine) of laying hens in the late phase of production compared to those at peak production. These upregulated genes were found to be enriched in little KEGG pathway, however, the downregulated genes were enriched in the pathways of PPAR signaling pathway, oxidative phosphorylation and glutathione metabolism. Besides, these downregulated genes were mapped to several GO clusters in relation to lipid metabolism, electron transport of respiratory chain, and oxidation resistance. Similarly, there were lower activities of total superoxide dismutase, glutathione S-transferase and Na + /K + -ATPase, and reductions of total antioxidant capacity and ATP level, along with an elevation in malondialdehyde content in the ileum of laying hens in the late phase of production as compared with those at peak production. C onclusion s: The intestine of laying hens in the late phase of production were predominantly characterized by a disorder of lipid metabolism, concurrent with impairments of energy production and antioxidant property. This study uncovers the mechanism underlying differences between the intestinal functionality of laying hens in the late phase and peak phase of production, thereby providing potential targets for the genetic control or dietary modulation of intestinal hypofunction of laying hens in the late phase of production.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 701
Author(s):  
Yi Wan ◽  
Ruiyu Ma ◽  
Anam Khalid ◽  
Lilong Chai ◽  
Renrong Qi ◽  
...  

One of the most important factors that determine feed utilization by chickens is the feed form. Although it is generally believed that pellet diets have a positive effect on chicken growth, there are some studies that have indicated no difference between pellet and mash on chickens performance. This study was conducted to assess the effects of feed form on production performance, egg quality, nutrient metabolism and intestinal morphology in two breed laying hens. Two hundred and sixteen 25-week-old Hy-Line brown (n = 108) and Hy-Line grey (n = 108) hens were selected. Each breed was randomly allocated into two treatments with 6 replications (9 birds in each replication), which were fed mash and pellet diets, respectively. Production performances were recorded daily and egg quality traits were measured every two weeks. At 42 weeks of age, one bird per replication from each experimental group was selected for metabolism determination and intestine morphology observation. Compared with mash diets, pellet diets improved laying rate (p < 0.05), ADFI (average daily feed intake, p < 0.05), egg weight, shell strength, yolk proportion and Haugh unit (p < 0.05) in both breeds and reduced the FCR (feed conversion ratio, p < 0.05) in Hy-Line grey. The apparent digestibility of DM% (dry matter) and CP% (crude protein) were significantly higher (p < 0.05) in both breed laying hens fed pellet than those fed mash. The apparent digestibility of P% (phosphorus) and Ca% (calcium) was higher in Hy-Line grey fed pellet and was higher in Hy-Line brown fed mash. Compared to mash diets, pellet diets increased the VH (villus height), CD (crypt depth) and VCR (ratio of villus height to crypt depth) of the small intestine of Hy-Line grey, and increased the VH and CD of duodenum and ileum of Hy-Line brown. Overall, pellet diets improved production performance and nutrition metabolism through positive changes in the laying rate, feed intake, egg albumen quality and apparent digestibility of laying hens. The current findings provided support for the advantages of feeding pellets during the peak egg laying period for the two popular laying hen strains, Hy-Line brown and Hy-Line grey.


Sign in / Sign up

Export Citation Format

Share Document