117. The effect of a zero-grazed perennial ryegrass, perennial ryegrass and white clover, or multispecies sward on the dry matter intake and milk production of dairy cows

2021 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Kate McCarthy ◽  
Niall Walsh ◽  
Chantal van Wylick ◽  
Michael McDonald ◽  
Bridget Lynch ◽  
...  
2016 ◽  
Vol 155 (4) ◽  
pp. 657-668 ◽  
Author(s):  
M. EGAN ◽  
M. B. LYNCH ◽  
D. HENNESSY

SUMMARYThe current experiment was undertaken to investigate the effect of including white clover (Trifolium repensL.; WC) into perennial ryegrass (Lolium perenneL.; PRG) swards (PRG/WC) receiving 250 kg nitrogen (N) per hectare (ha) per year compared with PRG only swards receiving 250 kg N/ha/year, in an intensive grass-based spring calving dairy production scenario. Forty spring-calving cows were allocated to graze either a PRG/WC or PRG sward (n= 20) from 6 February to 31 October 2012. Fresh herbage was offered daily (17 kg dry matter (DM)/cow) supplemented with concentrate in times of herbage deficit (total supplementation 507 kg/cow). Pre-grazing herbage mass (HM), sward WC content and milk production were measured for the duration of the experiment. Herbage DM intake was estimated in May, July and September. Pre-grazing HM (±s.e.) was similar (1467 ± 173·1 kg DM/ha) for both treatments, as was cumulative herbage production (14 158 ± 769 kg DM/ha). Average WC content of the PRG/WC swards was 236 ± 30 g/kg DM. The PRG/WC cows had greater average daily milk yield and milk solids yield from June onwards. Cumulative milk yield and milk solids yield were greater for the PRG/WC cows compared with the PRG cows (5048 and 4789 ± 34·3 kg milk yield/cow, and 400 and 388 ± 1·87 kg milk solids/cow, respectively). Cows had similar DM intake in all measurements periods (15·1 ± 0·42 kg DM/cow/day). In conclusion, including WC in N-fertilized PRG swards increased milk production from cows grazing the PRG/WC swards compared with PRG, particularly in the second half of the lactation.


1999 ◽  
Vol 133 (4) ◽  
pp. 419-425 ◽  
Author(s):  
Y. UNAL ◽  
P. C. GARNSWORTHY

Dry matter intake is one of the major factors limiting milk production in dairy cows, although the quantity of food consumed by an individual cow when housed and fed as part of a group is rarely known. Such information would permit more precise ration formulation, concentrate allocation and selection of cows according to efficiency of milk production. Alkanes have been used with sheep and cattle to estimate feed intake under grazing conditions and could provide a technique for measuring intake in housed dairy cows. The purpose of this study was to examine alkanes C32 and C36, in combination with alkane C33, as indigestible markers for estimating intake of housed dairy cows fed on different diets under experimental and commercial conditions. Three experiments were conducted with hay-based diets (Expt 1), silage only diets (Expt 2) and a diet consisting of a silage-based basal ration plus concentrates (Expt 3). Animals were dosed once daily with C32 and C36, either on filter papers (Expts 1 and 2) or as part of a specially prepared concentrate (Expt 3). Faecal recoveries of alkanes ranged from 0·88 to 0·99. Over the range of intakes found in the three experiments (6–24 kg DM/d), the r2 values for estimated versus actual dry matter intakes ranged from 0·81 to 0·99. It is concluded that alkanes could provide a useful technique for estimating intake in dairy cows housed and fed in groups.


1999 ◽  
Vol 39 (8) ◽  
pp. 923 ◽  
Author(s):  
P. J. Moate ◽  
D. E. Dalley ◽  
J. R. Roche ◽  
C. Grainger

Summary. The effect of herbage allowance (20, 30, 40, 50, 60 and 70 kg DM/cow. day) on the consumption of nutrients from herbage and milk production by cows in early lactation, was examined. The experiment was conducted on rainfed perennial ryegrass pastures in September and October 1997 in south-eastern Victoria, Australia. The herbage on offer comprised 64% perennial ryegrass, 21% other grasses, 1% white clover, 5% weeds and 9% dead material on a dry matter (DM) basis. The average pregrazing herbage height was 13 cm, at an estimated pregrazing herbage mass of 3.6 t DM/ha. The herbage on offer was of high quality containing 11.6 MJ metabolisable energy/kg DM, 202 g crude protein/kg DM and 525 g neutral detergent fibre/kg DM. Concentrations of calcium, magnesium, sodium, potassium, phosphorus, sulfur and chloride were 4.4, 2.2, 4.4, 31.2, 3.5, 2.7 and 11.4 g/kg DM, respectively. As daily herbage allowance per cow increased, dry matter intake increased curvilinearly (P<0.01) from 11.2 to 18.7 kg DM/cow. day. This was associated with a decrease in utilisation of herbage from 54 to 26% and an increase in milk production from 25.9 to 29.1 kg/cow. day. The cows on all treatments grazed for less than 8.7 h/day. The increase in intake was achieved by an increase in the rate of herbage intake from 1.5 to 2.2 kg DM/h for herbage allowances of 20 and 70 kg/cow.day, respectively. Irrespective of herbage allowance, cows selected a diet that was approximately 10% higher in in vitro dry matter digestibility and 30% higher in crude protein than that in the herbage on offer. The neutral detergent fibre content of the herbage selected was lower (P<0.05) than that on offer. The herbage consumed contained more (P<0.05) magnesium, potassium and sulfur, the same amount of calcium and phosphorus and less (P<0.05) sodium and chloride than the herbage on offer. For rainfed perennial pastures in spring, herbage allowance is an important factor in determining voluntary feed intake and production of dairy cows. To achieve 30 L from herbage, without supplementation, high herbage allowances are required. The increase in herbage intake, with increasing herbage allowance, resulted from an increase in rate of dry matter intake and not an increase in grazing time. No relationship was evident between herbage allowance and the selection differentials for in vitro dry matter digestibility, crude protein and neutral detergent fibre. Selection differentials for rainfed perennial pastures in spring are similar to those reported for irrigated perennial pastures in northern Victoria in spring and autumn. When determining nutrient requirements it is important to consider the interaction between herbage intake and nutrient concentration in the herbage.


2020 ◽  
Vol 60 (1) ◽  
pp. 143 ◽  
Author(s):  
Bríd McClearn ◽  
Trevor Gilliland ◽  
Clare Guy ◽  
Michael Dineen ◽  
Fergal Coughlan ◽  
...  

Grazed grass is considered the cheapest feed available for dairy cows in temperate regions, and to maximise profits, dairy farmers must utilise this high-quality feed where possible. Recent research has reported that including white clover (Trifolium repens L.) in grass swards can have a positive effect on milk production. The aim of the present study was to quantify the effect of tetraploid and diploid perennial ryegrass (Lolium perenne L.; PRG) swards sown with and without white clover on the milk production of grazing dairy cows. Four grazing treatments were used for the study; tetraploid-only PRG swards, diploid-only PRG swards, tetraploid PRG with white clover swards and diploid PRG with white clover swards. Thirty cows were assigned to each treatment and swards were rotationally grazed at a stocking rate of 2.75 cows/ha and a nitrogen-fertiliser application rate of 250 kg/ha annually. There was no significant effect of ploidy on milk production. Over the present 4-year study, cows grazing the PRG–white clover treatments had greater milk yields (+597 kg/cow.year) and milk-solid yield (+48 kg/cow.year) than cows grazing the PRG-only treatments. This significant increase in milk production suggests that the inclusion of white clover in grazing systems can be effectively used to increase milk production of grazing dairy cows.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 925
Author(s):  
Zhao ◽  
Min ◽  
Zheng ◽  
Wang

Heat stress negatively impacts the health and milk production of dairy cows, and ruminal microbial populations play an important role in dairy cattle’s milk production. Currently there are no available studies that investigate heat stress-associated changes in the rumen microbiome of lactating dairy cattle. Improved understanding of the link between heat stress and the ruminal microbiome may be beneficial in developing strategies for relieving the influence of heat stress on ruminants by manipulating ruminal microbial composition. In this study, we investigated the ruminal bacterial composition and metabolites in heat stressed and non-heat stressed dairy cows. Eighteen lactating dairy cows were divided into two treatment groups, one with heat stress and one without heat stress. Dry matter intake was measured and rumen fluid from all cows in both groups was collected. The bacterial 16S rRNA genes in the ruminal fluid were sequenced, and the rumen pH and the lactate and acetate of the bacterial metabolites were quantified. Heat stress was associated with significantly decreased dry matter intake and milk production. Rumen pH and rumen acetate concentrations were significantly decreased in the heat stressed group, while ruminal lactate concentration increased. The influence of heat stress on the microbial bacterial community structure was minor. However, heat stress was associated with an increase in lactate producing bacteria (e.g., Streptococcus and unclassified Enterobacteriaceae), and with an increase in Ruminobacter, Treponema, and unclassified Bacteroidaceae, all of which utilize soluble carbohydrates as an energy source. The relative abundance of acetate-producing bacterium Acetobacter decreased during heat stress. We concluded that heat stress is associated with changes in ruminal bacterial composition and metabolites, with more lactate and less acetate-producing species in the population, which potentially negatively affects milk production.


Sign in / Sign up

Export Citation Format

Share Document