scholarly journals Implementation of a frequency-domain neutron noise analysis method in a production-level continuous energy Monte Carlo code: Verification and application in a BWR

2018 ◽  
Vol 115 ◽  
pp. 494-501 ◽  
Author(s):  
Toshihiro Yamamoto
2021 ◽  
Vol 247 ◽  
pp. 04007
Author(s):  
Oskari Pakari ◽  
Davide Mancusi ◽  
Odile Petit ◽  
Andrea Zoia ◽  
Vincent Lamirand ◽  
...  

Intrinsic neutron noise experiments offer a non-invasive manner to measure the prompt decay constant or reactivity of fissile systems. Using the fluctuations in the density of fission chains, one can infer the kinetics parameters via correlation analysis such as the Rossi-alpha method. The models allowing for the interpretation of these measurements typically rely on the assumption of the system behaving according to point kinetics. When dealing with systems where point kinetics fail to predict the true time correlation – such as heterogeneous or large cores – the direct simulation of fission chains using Monte Carlo methods appears as the only reliable candidate to provide reference predictions for the correlation functions. Monte Carlo methods using explicit fission model libraries are thus being examined as tools for prediction in noise analysis. In this work we illustrate the developments and simulation results of the analog transport capabilities of the TRIPOLI-4 Monte Carlo code coupled with the LLNL fission library FREYA, as applied to a set of neutron noise experiments carried out in the CROCUS zero-power reactor with emphasis on the identification of spatial effects. To validate the general capability of the code to predict noise correlations, we examine time distributions of the whole core fission and explicit detection reactions. We present the methodology to achieve a good agreement between experiments and simulations. We reproduced experimental results for relative α, within typical biases, and conclude on the general feasibility of the analog method. We further explore a decoupled core model and analyze it using the noise method. The results indicate an effective method to treat decoupled systems.


2021 ◽  
Vol 247 ◽  
pp. 21002
Author(s):  
Amélie Rouchon ◽  
Malkiel Vadée Le Brun ◽  
Andrea Zoia

Neutron noise analysis addresses the description of small time-dependent flux fluctuations in reactor cores, induced by small global or local perturbations of the macroscopic cross sections due to density fluctuations of the coolant, to vibrations of fuel elements, control rods, or structural materials. The general noise equations are obtained by assuming small perturbations around a steady-state neutron flux and by subsequently taking the Fourier transform in the frequency domain. Recently, new neutron noise solvers have been implemented in diffusion and transport theory in APOLLO3®, the multi-purpose deterministic transport code developed at CEA, and a new stochastic solver has been implemented for the neutron noise analysis in the frequency domain in the Monte Carlo code TRIPOLI-4®, also developed at CEA. In this paper, we compare the two solvers for the case of fuel pin oscillations in a simplified UOX fuel assembly, in view of proposing the examined configurations as a benchmark for neutron noise calculations.


2018 ◽  
Vol 175 ◽  
pp. 09008
Author(s):  
Claudio Bonati ◽  
Enrico Calore ◽  
Simone Coscetti ◽  
Massimo D’Elia ◽  
Michele Mesiti ◽  
...  

Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.


2015 ◽  
Vol 85 ◽  
pp. 245-258 ◽  
Author(s):  
Manuele Aufiero ◽  
Adrien Bidaud ◽  
Mathieu Hursin ◽  
Jaakko Leppänen ◽  
Giuseppe Palmiotti ◽  
...  

2011 ◽  
Vol 2 (0) ◽  
pp. 369-374 ◽  
Author(s):  
Keisuke OKUMURA ◽  
Shiho ASAI ◽  
Yukiko HANZAWA ◽  
Hideya SUZUKI ◽  
Masaaki TOSHIMITSU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document