continuous energy spectrum
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 2072 (1) ◽  
pp. 012007
Author(s):  
H Raflis ◽  
M Ilham ◽  
Z Su’ud ◽  
A Waris ◽  
D Irwanto

Abstract The core configuration analysis of modular Gas-cooled Fast Reactor (GFR) has been done to understand GFR performance. The modular GFR used a fast neutron spectrum and high-temperature helium gas, providing higher thermal efficiency than the other generation IV reactor candidates. In this paper, the variation of core configuration and dimension for core design has been applied in radial, axial, and radial-axial directions. The Monte Carlo method, named OpenMC code, has been used for the criticality and isotope evaluation of design core GFR. The OpenMC code provides the probabilistic solution to solve the neutron transport equation in a 3D model and non-homogenous physical volumes using Evaluated Nuclear Data File (ENDF/B-VII.b5) and continuous energy spectrum. The neutronics parameters characterized are the value of keff, fission rate and neutron flux distribution, and fissile material evolution to know of GFR core design’s performance. The analysis showed that the core configuration in radial direction gives a good understanding of the feasibility of GFR core design.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. F. Lo

AbstractWe have shown that the smallest possible singel-qubit critical coupling strength of the N-qubit two-photon Rabi model is only 1/N times that of the two-photon Rabi model. The spectral collapse can thus occur at a more attainable value of the critical coupling. For both of the two-qubit and three-qubit cases, we have also rigorously demonstrated that at the critical coupling the system not only has a set of discrete eigenenergies but also a continuous energy spectrum. The discrete eigenenergy spectrum can be derived via a simple one-to-one mapping to the bound state problem of a particle of variable effective mass in the presence of a finite potential well and a nonlocal potential. The energy difference of each qubit, which specifies both the depth of the finite potential well and the strength of the nonlocal potential, determines the number of bound states available, implying that the extent of the incomplete spectral collapse can be monitored in a straightforward manner.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
C. F. Lo

Abstract We have investigated the eigenenergy spectrum of the two-photon Rabi model with a full quadratic coupling, particularly the special feature “spectral collapse”. The critical coupling strength is reduced by half from that of the two-photon Rabi model, implying that the spectral collapse can now occur at a more attainable value of the critical coupling. At the critical coupling some discrete eigenenergy levels still survive below the continuous energy spectrum, i.e. an incomplete spectral collapse, and the set of discrete eigenenergies has a one-to-one mapping with that of a particle of variable effective mass in a finite potential well. Since the energy difference between the two atomic levels specifies the depth of the potential well, the number of bound states available (or the extent of the “spectral collapse”) can be straightforwardly monitored. Obviously, this bears a great resemblance to the spectral collapse of the two-photon Rabi model, at least qualitatively. Moreover, since the full quadratic coupling includes an extra term proportional to the photon number operator only, our analysis indicates that one may manipulate the critical coupling of the two-photon Rabi model by incorporating an adjustable proportionality constant to this extra term.


Author(s):  
Heinz-Eberhard Mahnke

The current activities in detecting neutrinos as carriers of information from far out in our Universe prompt us to look back on the research activities a century ago that led to the discovery of these weakly interacting particles. One of the leading researchers was Lise Meitner, who observed electrons with well-defined energy, besides the continuous energy spectrum emitted in β decay. These electron lines are well understood as radiationless nuclear transitions competing with γ-ray emission. It is proposed to name the electrons resulting out of this so-called internal conversion process after Lise Meitner and Charles D. Ellis. The equivalent process within the electronic (atomic) shell is the Auger effect , competing with X-ray emission. In this context, the radioactive decay of UX1 or 234 Th, well studied a century ago by Lise Meitner and Charles Ellis, is re-visited, and the mono-energetic electrons are ascribed entirely to the internal conversion process.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
C. F. Lo

Abstract We have investigated the eigenenergy spectrum of the two-photon Rabi model at the critical coupling, particularly the special feature “spectral collapse”, by means of an elementary quantum mechanics approach. The eigenenergy spectrum is found to consist of both a set of discrete energy levels and a continuous energy spectrum. Each of these eigenenergies has a two-fold degeneracy corresponding to the spin degree of freedom. The discrete eigenenergy spectrum has a one-to-one mapping with that of a particle in a “Lorentzian function” potential well, and the continuous energy spectrum can be derived from the scattering problem associated with a potential barrier. The number of bound states available at the critical coupling is determined by the energy difference between the two atomic levels so that the extent of the “spectral collapse” can be monitored in a straightforward manner.


2016 ◽  
Vol 94 (12) ◽  
pp. 1253-1258 ◽  
Author(s):  
Boris I. Ivlev

The motion of a particle in a potential well is studied when the particle is attached to an infinite elastic string. This is generic with the problem of dissipative quantum mechanics investigated by Caldeira and Leggett (Ann. Phys. 149, 374 (1983). doi: 10.1016/0003-4916(83)90202-6 ). Besides the dissipative motion there is another scenario of interaction of the string with the particle attached. Stationary particle–string states exist with string deformations accompanying the particle. This is like polaronic states in solids. Our polaronic states in the well are non-decaying and have a continuous energy spectrum. These states may have a link to quantum electrodynamics.


2016 ◽  
Vol 858 ◽  
pp. 531-534 ◽  
Author(s):  
Roland Rupp ◽  
Werner Schustereder ◽  
Tobias Höechbauer ◽  
Ronny Kern ◽  
Michael Rüb ◽  
...  

A new method for homogenous drift layer doping is introduced. Instead of in-situ doping during epitaxial growth a subsequent high energy ion implant step is used to dope the drift layer of 650V MPS (Merged-PN-Schottky) diodes. In order to avoid multiple implant steps with various energies for emulating a box-like doping profile, a novel “energy filter” membrane is used to transform the monochromatic ion beam to a beam with a continuous energy spectrum suited for box-like doping. The electrical characteristics of the diodes manufactured by this means show a very homogenous blocking behavior on wafer level, however the expected improved homogeneity in differential resistance of the wafers could not be confirmed by wafer level measurements. More work is needed to understand this discrepancy between experiment and theory.


Sign in / Sign up

Export Citation Format

Share Document