Development of the neutronics transport code based on the MOC method and adjoint-forward Coarse Mesh Finite Difference technique: PerMOC code for lattice and whole core calculations

2019 ◽  
Vol 133 ◽  
pp. 84-95 ◽  
Author(s):  
K.H. Hosseinipour ◽  
F. Faghihi
2003 ◽  
Vol 8 (1) ◽  
pp. 3-18 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
J. Kulys

A mathematical model of amperometric biosensors has been developed to simulate the biosensor response in stirred as well as non stirred solution. The model involves three regions: the enzyme layer where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region, where the analyte concentration is maintained constant. Using computer simulation the influence of the thickness of the enzyme layer as well the diffusion one on the biosensor response was investigated. The computer simulation was carried out using the finite difference technique.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


1982 ◽  
Vol 22 (03) ◽  
pp. 409-419 ◽  
Author(s):  
R.G. Larson

Abstract The variably-timed flux updating (VTU) finite difference technique is extended to two dimensions. VTU simulations of miscible floods on a repeated five-spot pattern are compared with exact solutions and with solutions obtained by front tracking. It is found that for neutral and favorable mobility ratios. VTU gives accurate results even on a coarse mesh and reduces numerical dispersion by a factor of 10 or more over the level generated by conventional single-point (SP) upstream weighting. For highly unfavorable mobility ratios, VTU reduces numerical dispersion. but on a coarse mesh the simulation is nevertheless inaccurate because of the inherent inadequacy of the finite-difference estimation of the flow field. Introduction A companion paper (see Pages 399-408) introduced the one-dimensional version of VTU for controlling numerical dispersion in finite-difference simulation of displacements in porous media. For linear and nonlinear, one- and two-independent-component problems, VTU resulted in more than an order-of-magnitude reduction in numerical dispersion over conventional explicit. SP upstream-weighted simulations with the same number of gridblocks. In this paper, the technique is extended to two dimensional (2D) problems, which require solution of a set of coupled partial differential equations that express conservation of material components-i.e., (1) and (2) Fi, the fractional flux of component i, is a function of the set of s - 1 independent-component fractional concentrations {Ci}, which prevail at the given position and time., the dispersion flux, is given by an expression that is linear in the specie concentration gradients. The velocity, is proportional to the pressure gradient,. (3) where lambda, in general, can be a function of composition and of the magnitude of the pressure gradient. The premises on which Eqs. 1 through 3 rest are stated in the companion paper. VTU in Two Dimensions The basic idea of variably-timed flux updating is to use finite-difference discretization of time and space, but to update the flux of a component not every timestep, but with a frequency determined by the corresponding concentration velocity -i.e., the velocity of propagation of fixed concentration of that component. The concentration velocity is a function of time and position. In the formulation described here, the convected flux is upstream-weighted, and all variables except pressure are evaluated explicitly. As described in the companion paper (SPE 8027), the crux of the method is the estimation of the number of timesteps required for a fixed concentration to traverse from an inflow to an outflow face of a gridblock. This task is simpler in one dimension, where there is only one inflow and one outflow face per gridblock, than it is in two dimensions, where each gridblock has in general multiple inflow and outflow faces. SPEJ P. 409^


2003 ◽  
Vol 144 (1) ◽  
pp. 23-35 ◽  
Author(s):  
Nuria García-Herranz ◽  
Oscar Cabellos ◽  
José M. Aragonés ◽  
Carol Ahnert

2000 ◽  
Author(s):  
Mehrdad Massoudi ◽  
Tran X. Phuoc

Abstract In this paper we study the flow of granular materials between two horisontal flat plates where the top plate is moving with a constant speed. The constitutive relation used for the stress is based on the continuum model proposed by Rajagopal and Massoudi (1990), where the material parameters are derived using the kinetic theory model proposed by Boyle and Massoudi (1990). The governing equations are non-dimensionalized and the resulting system of non-linear differential equations is solved numerically using finite difference technique.


Sign in / Sign up

Export Citation Format

Share Document