Research on the fabrication method of macroscopic cross section base on the Monte Carlo simulation

2021 ◽  
Vol 153 ◽  
pp. 108064
Author(s):  
Yulin Ge ◽  
Gang Li ◽  
Cenxi Yuan
2005 ◽  
Vol 62 (5) ◽  
pp. 1529-1544 ◽  
Author(s):  
Ken-ichi Maruyama ◽  
Yasushi Fujiyoshi

Abstract A stochastic microphysical model of snow aggregation that combines a simple aggregation model with a Monte Carlo method was developed. Explicit treatment of the shape of individual snowflakes in the new model facilitates examination of the structure of snowflakes and the relationships between the parameters of the generated snowflakes, such as mass versus diameter, in addition to comparisons with observations. In this study, complexities in the shape of snowflakes are successfully simulated, and the understanding of the evolution of their size distribution is advanced. The mean diameter of snow particles evolves more rapidly in the aggregate model than in the sphere model. However, growth rates of the aggregates greatly depend on the collision section of particles in aggregation. The mean mass of snowflakes in the aggregate model grows more slowly than the mass in the sphere model when the sum of the particle cross section is used as the collision cross section. The mean mass grows more quickly when a circle is used whose radius is the sum of the radii of two particles. Sensitivity experiments showed that aggregation also depends on the mean and standard deviation of the initial distribution, and on the density of constituent particles.


2021 ◽  
Vol 247 ◽  
pp. 04002
Author(s):  
Augusto Hernandez-Solis ◽  
Yohannes Molla ◽  
Edoaurd Malambu ◽  
Alexey Stankovskiy ◽  
Gert Van den Eynde

The OpenMC code is being employed both as a multi-group nodal macroscopic cross-section generator and a reference multi-group Monte Carlo (MGMC) solution. The aim is to do a neutronic benchmark verification study versus a deterministic model (based on the MYRRHA-1.6 core) performed by the PHISICS simulator. MYRRHA, a novel research accelerator driven system concept that is also foreseen to work as a critical configuration, offers a rich opportunity of testing state-of-the art methods for reactor physics analysis due to its strong heterogeneous configuration utilized for both thermal and fast spectra irradiation purposes. The original core configuration representing MYRRHA-1.6 and formed by 169 assemblies, was launched in OpenMC for producing a homogenous nodal model that, when executed in its multi-group Monte Carlo mode, it produced a keff that differs in almost 500 pcm from the original case. This means that in the future, such approximation should correct the nodal cross-sections to preserve the reaction rates in order to match those ones from the heterogeneous model. Nevertheless, such MGMC mode of operation offered by OpenMC could be exploited in order to verify deterministic core simulators. By inputting the same nodal multi-group cross-section model into the transport solver of the PHISICS toolkit, the neutronic benchmark showed a difference of 171 pcm in eigenvalue while comparing it to its OpenMC MGMC counterpart. Also, local multi-group and energy-integrated nodal profiles of the neutron flux showed a maximum relative difference between methodologies of 15% and 1%, respectively. This means that the MGMC capabilities offered by OpenMC can be employed to verify other deterministic methodologies.


Sign in / Sign up

Export Citation Format

Share Document