Mechanical defects diagnosis for gas insulated switchgear using acoustic imaging approach

2021 ◽  
Vol 174 ◽  
pp. 107784
Author(s):  
Qing Xiong ◽  
Jinfei Zhao ◽  
Ziqing Guo ◽  
Xianyong Feng ◽  
Hanchao Liu ◽  
...  
Author(s):  
John A. Judge ◽  
Joseph F. Vignola ◽  
Aldo A. J. Glean ◽  
Teresa J. Ryan ◽  
Chelsea E. Good ◽  
...  

Synthetic aperture acoustic (SAA) imaging is a technique for remotely obtaining information about the location, geometry, and mechanical properties of objects based on the way they scatter incident acoustic energy. Results are presented for an experimental investigation of the use of SAA imaging to detect non-metallic cords of different sizes laid in various configurations on the ground surface in an outdoor urban environment. Interest in this application of SAA stems from the fact that non-metallic cords are not readily detectable with synthetic aperture radar (SAR) and that the SAA imaging approach represents a relatively inexpensive alternative or supplement to SAR. The measurement system is comprised of a mobile acoustic transceiver (a speaker and microphone) that broadcasts a burst chirp with a bandwidth of 2–15 kHz. The recorded signal is used to form a two-dimensional image of the distribution of acoustic scatterers within the scene. For this study, five different diameters (2–15mm) of nylon cord laid on the ground were imaged in different configurations. These measurements were made in the presence of urban ambient noise of varying levels. The goal of this study was to identify the effect of environmental noise and other parameters on detectability. The results demonstrate that non-metallic cords can be detected acoustically if the angle to the transceiver path is sufficiently small.


2020 ◽  
Vol 140 (5) ◽  
pp. 409-414
Author(s):  
Masaru Tatemi ◽  
Hisao Inami ◽  
Toshiaki Rokunohe ◽  
Makoto Hirose

2014 ◽  
Author(s):  
Ashok Srivastava ◽  
Hiroaki Yamamoto ◽  
Shabbir Ahmed ◽  
Jonathon Roberts ◽  
Fabrice Cantin ◽  
...  
Keyword(s):  

Author(s):  
Nicholas Bennett ◽  
◽  
Adam Donald ◽  
Sherif Ghadiry ◽  
Mohamed Nassar ◽  
...  

Author(s):  
Dima A. Smolyansky

Abstract The visual nature of Time Domain Reflectometry (TDR) makes it a very natural technology that can assist with fault location in BGA packages, which typically have complex interweaving layouts that make standard failure analysis techniques, such as acoustic imaging and X-ray, less effective and more difficult to utilize. This article discusses the use of TDR for package failure analysis work. It analyzes in detail the TDR impedance deconvolution algorithm as applicable to electronic packaging fault location work, focusing on the opportunities that impedance deconvolution and the resulting true impedance profile opens up for such work. The article examines the TDR measurement accuracy and the comparative package failure analysis, and presents three main considerations for package failure analysis. It also touches upon the goal and the task of the failure analysts and TDR's specific signatures for the open and short connections.


Sign in / Sign up

Export Citation Format

Share Document