Comparison of parallel implementation strategies for the image source method for real-time virtual acoustics

2021 ◽  
Vol 178 ◽  
pp. 108000
Author(s):  
Konstantinos Gkanos ◽  
Finnur Pind ◽  
Hans Henrik Brandenborg Sørensen ◽  
Cheol-Ho Jeong
Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 627
Author(s):  
David Marquez-Viloria ◽  
Luis Castano-Londono ◽  
Neil Guerrero-Gonzalez

A methodology for scalable and concurrent real-time implementation of highly recurrent algorithms is presented and experimentally validated using the AWS-FPGA. This paper presents a parallel implementation of a KNN algorithm focused on the m-QAM demodulators using high-level synthesis for fast prototyping, parameterization, and scalability of the design. The proposed design shows the successful implementation of the KNN algorithm for interchannel interference mitigation in a 3 × 16 Gbaud 16-QAM Nyquist WDM system. Additionally, we present a modified version of the KNN algorithm in which comparisons among data symbols are reduced by identifying the closest neighbor using the rule of the 8-connected clusters used for image processing. Real-time implementation of the modified KNN on a Xilinx Virtex UltraScale+ VU9P AWS-FPGA board was compared with the results obtained in previous work using the same data from the same experimental setup but offline DSP using Matlab. The results show that the difference is negligible below FEC limit. Additionally, the modified KNN shows a reduction of operations from 43 percent to 75 percent, depending on the symbol’s position in the constellation, achieving a reduction 47.25% reduction in total computational time for 100 K input symbols processed on 20 parallel cores compared to the KNN algorithm.


2021 ◽  
Vol 11 (6) ◽  
pp. 2722
Author(s):  
Zhiwen Qian ◽  
Dejiang Shang ◽  
Yuan Hu ◽  
Xinyang Xu ◽  
Haihan Zhao ◽  
...  

The Green’s function (GF) directly eases the efficient computation for acoustic radiation problems in shallow water with the use of the Helmholtz integral equation. The difficulty in solving the GF in shallow water lies in the need to consider the boundary effects. In this paper, a rigorous theoretical model of interactions between the spherical wave and the liquid boundary is established by Fourier transform. The accurate and adaptive GF for the acoustic problems in the Pekeris waveguide with lossy seabed is derived, which is based on the image source method (ISM) and wave acoustics. First, the spherical wave is decomposed into plane waves in different incident angles. Second, each plane wave is multiplied by the corresponding reflection coefficient to obtain the reflected sound field, and the field is superposed to obtain the reflected sound field of the spherical wave. Then, the sound field of all image sources and the physical source are summed to obtain the GF in the Pekeris waveguide. The results computed by this method are compared with the standard wavenumber integration method, which verifies the accuracy of the GF for the near- and far-field acoustic problems. The influence of seabed attenuation on modal interference patterns is analyzed.


Sign in / Sign up

Export Citation Format

Share Document