interchannel interference
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
S. B. Makarov ◽  
S. V. Zavjalov ◽  
D. C. Nguyen ◽  
A. S. Ovsyannikova

Introduction. Spectrally efficient frequency division multiplexing (SEFDM) is a promising technology for improving spectral efficiency. Since SEFDM signals transmitted on subcarriers are not orthogonal, interchannel interference occurs due to the mutual influence of signals transmitted on adjacent subcarriers. Algorithms for receiving SEFDM signals can be distinguished into element-by-element coherent detection and maximum-likelihood sequence estimation (MLSE). The former method, although being simpler, is characterized by a low bit error rate performance. The latter method, although providing for a higher energy efficiency, is more complicated and does not allow high absolute message rates.Aim. To consider a trade-off solution to the problem of coherent detection of SEFDM signals under the condition of significant interchannel interference, namely, the use of an iterative algorithm of element-by-element processing with decision feedback at each subcarrier frequency.Materials and methods. Analytical expressions for the operation of a demodulator solver were derived. A simulation model for transmission of SEFDM signals was built in the MatLab environment, including element-by-element detection with decision feedback.Results. The simulation results confirmed the efficiency of the proposed algorithm. For error probabilities p =102…103, the energy gains reach values from 0.2 to 7.5 dB for different values of the non-orthogonal subcarrier spacing. At the same time, the efficiency of the detection algorithm with decision feedback turns out to be significantly lower than that when using the detection algorithm MLSE.Conclusion. The proposed detection algorithm can be used in future generations of mobile communications, which require high transmission rates. By reducing the computational complexity of the algorithm, it is possible to provide for a lower power consumption of mobile devices.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 627
Author(s):  
David Marquez-Viloria ◽  
Luis Castano-Londono ◽  
Neil Guerrero-Gonzalez

A methodology for scalable and concurrent real-time implementation of highly recurrent algorithms is presented and experimentally validated using the AWS-FPGA. This paper presents a parallel implementation of a KNN algorithm focused on the m-QAM demodulators using high-level synthesis for fast prototyping, parameterization, and scalability of the design. The proposed design shows the successful implementation of the KNN algorithm for interchannel interference mitigation in a 3 × 16 Gbaud 16-QAM Nyquist WDM system. Additionally, we present a modified version of the KNN algorithm in which comparisons among data symbols are reduced by identifying the closest neighbor using the rule of the 8-connected clusters used for image processing. Real-time implementation of the modified KNN on a Xilinx Virtex UltraScale+ VU9P AWS-FPGA board was compared with the results obtained in previous work using the same data from the same experimental setup but offline DSP using Matlab. The results show that the difference is negligible below FEC limit. Additionally, the modified KNN shows a reduction of operations from 43 percent to 75 percent, depending on the symbol’s position in the constellation, achieving a reduction 47.25% reduction in total computational time for 100 K input symbols processed on 20 parallel cores compared to the KNN algorithm.


2019 ◽  
Vol 29 (2) ◽  
pp. 9-23 ◽  
Author(s):  
Jhon James Granada Torres ◽  
Juan Pablo López Martínez ◽  
Eduardo Avendaño Fernández ◽  
Ana María Cárdenas Soto ◽  
Neil Guerrero González

This paper presents a characterization of interchannel interference (ICI) effects in gridless Nyquist-wdm systems due to two contributions, namely, overlapping among optical carriers and stimulation of nonlinear optical fiber impairments. ICI is assessed regarding bit error rate (BER) at 16 and 32 Gbaud, as a function of several system parameters. Nonlinear impairment compensation based on the digital back-propagation algorithm is implemented in the DSP-based coherent receiver. Results demonstrated that ICI due to channels overlapped has a higher impact concerning BER than nonlinear optical fiber impairments. Besides, the use of the back-propagation algorithm improves system performance, reducing up to 3 and 0.7 orders of magnitude of BER in QPSK and 16QAM cases, respectively. It means that this algorithm can minimize nonlinear effects under varying system parameters, but its performance is limited in sub-Nyquist cases.


2019 ◽  
Vol 30 ◽  
pp. 04008
Author(s):  
Andrey Degtyaryov ◽  
Vera Miryanova

The article deals with analysis of the causes of intersymbol interference and interchannel interference. It is indicated that physically unrealizable orthogonal bases are used to describe systems and signals. The considered interference occurs due to the loss of orthogonality by the coordinate signals of the bases. Known methods for obtaining systems of orthogonal functions do not allow the formation of a coordinate basis corresponding to physically feasible systems and signals. It is proposed to use equidistant biased impulse characteristics of physically realizable linear systems as basic signals. An orthogonalization method based on determining the weight of orthogonality is described. It is shown that the resulting basis is quasi-orthogonal. It is determined that the conversion of the standart low-pass prototype filter into the filters of channel-forming equipment does not change the conditions of orthogonality. Structural schemes of a modulator and a demodulator of two-dimensional signals are proposed, based on the developed method of orthogonalization.


2019 ◽  
Vol 30 ◽  
pp. 04015
Author(s):  
Andrey Degtyaryov

To reduce the level of intersymbol interference and interchannel interference, it is proposed to form the transmitted signals using the basis functions obtained by shifting the impulse responses of linear systems by multiple time intervals. An algorithm for calculating the weight of the orthogonality of basis functions is proposed. A criterion for the existence of the indicated weight of orthogonality is formulated.


Sign in / Sign up

Export Citation Format

Share Document