High-resolution two-dimensional imaging using MIMO sonar with limited physical size

2021 ◽  
Vol 182 ◽  
pp. 108280
Author(s):  
Xionghou Liu ◽  
Tao Wei ◽  
Chao Sun ◽  
Yixin Yang ◽  
Jie Zhuo
Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
K. H. Downing ◽  
S. G. Wolf ◽  
E. Nogales

Microtubules are involved in a host of critical cell activities, many of which involve transport of organelles through the cell. Different sets of microtubules appear to form during the cell cycle for different functions. Knowledge of the structure of tubulin will be necessary in order to understand the various functional mechanisms of microtubule assemble, disassembly, and interaction with other molecules, but tubulin has so far resisted crystallization for x-ray diffraction studies. Fortuitously, in the presence of zinc ions, tubulin also forms two-dimensional, crystalline sheets that are ideally suited for study by electron microscopy. We have refined procedures for forming the sheets and preparing them for EM, and have been able to obtain high-resolution structural data that sheds light on the formation and stabilization of microtubules, and even the interaction with a therapeutic drug.Tubulin sheets had been extensively studied in negative stain, demonstrating that the same protofilament structure was formed in the sheets and microtubules. For high resolution studies, we have found that the sheets embedded in either glucose or tannin diffract to around 3 Å.


2001 ◽  
Vol 120 (5) ◽  
pp. A226-A226 ◽  
Author(s):  
W LAMMERS ◽  
S DHANASEKARAN ◽  
J SLACK ◽  
B STEPHEN

1985 ◽  
Vol 54 (03) ◽  
pp. 626-629 ◽  
Author(s):  
M Meyer ◽  
F H Herrmann

SummaryThe platelet proteins of 9 thrombasthenic patients from 7 families were analysed by high resolution two-dimensional gel electrophoresis (HR-2DE) and crossed immunoelectrophoresis (CIE). In 7 patients both glycoproteins (GPs) IIb and Ilia were absent or reduced to roughly the same extent. In two related patients only a trace of GP Ilb-IIIa complex was detected in CIE, but HR-2DE revealed a glycopeptide in the position of GP Ilia in an amount comparable to type II thrombasthenia. This GP Ilia-like component was neither recognized normally by anti-GP Ilb-IIIa antibodies nor labeled by surface iodination. In unreduced-reduced two-dimensional gel electrophoresis two components were observed in the region of GP Ilia. The assumption of a structural variant of GP Ilia in the two related patients is discussed.


1993 ◽  
Author(s):  
Yan Betremieux ◽  
Timothy A. Cook ◽  
Daniel M. Cotton ◽  
Supriya Chakrabarti

Sign in / Sign up

Export Citation Format

Share Document