Rational Synthesis of Palladium Nanoparticles Modified by Phosphorous for the Conversion of Diphenyl Ether to KA Oil

2021 ◽  
pp. 118464
Author(s):  
Liang Zhao ◽  
Jing-Pei Cao ◽  
Yu-Lei Wei ◽  
Wei Jiang ◽  
Jin-Xuan Xie ◽  
...  
2019 ◽  
Vol 6 (3) ◽  
pp. 104-107
Author(s):  
Marina Vladimirovna Lebedeva ◽  
Alexey Petrovich Antropov ◽  
Alexander Victorovich Ragutkin ◽  
Nicolay Andreevich Yashtulov

In paper electrode materials with palladium nanoparticles on polymer matrix substrates for energy sources have been formed. Nanocomposites were investigated by atomic force and scanning electron microscopy. The catalytic activity of formed electrodes in the formic acid oxidation reaction was evaluated by voltammetry method.


2014 ◽  
Vol 29 (8) ◽  
pp. 814 ◽  
Author(s):  
GUO Li-Ping ◽  
BAI Jie ◽  
LIANG Hai-Ou ◽  
LI Chun-Ping ◽  
SUN Wei-Yan ◽  
...  

2018 ◽  
Vol 55 (4) ◽  
pp. 302-311
Author(s):  
Long Bai ◽  
Xiaochen Liu ◽  
Tiliu Jiao ◽  
Yong Wang ◽  
Yueqing Huo ◽  
...  

2019 ◽  
Vol 70 (8) ◽  
pp. 3085-3088
Author(s):  
Carmen Eugenia Stavarache ◽  
Yasuaki Maeda ◽  
Mircea Vinatoru

Neat nitrobenzene was continuously irradiated at two ultrasonic frequencies: 40 and 200 kHz, under air and argon atmosphere, respectively. Samples taken at intervals of 1, 5, 10 and 24 h were analyzed by GC-MS and decomposition products were identified. Possible reaction mechanisms are discussed. Presence of air as dissolved gas leads to oxygenated compounds such as 1,4-benzoquinone, 2,4-dinitrophenol, m-dinitrobenzene while argon inhibits the decomposition of nitrobenzene, especially at sonication times under 5 h. Based on the nature of the compounds identified we advanced a mechanism, involving a divergent splitting of unstable radical cation of NB in air and argon respectively. Thus, under air, the phenyl cation formation is preferred leading to 1,4-benzoquinone nitro-biphenyls and dinitrobenzene, while under argon, the phenyl radical formation seems to be favored, leading to phenol and diphenyl ether. The oxygenated compounds detected under argon clearly are a consequence of the nitro group splitting.


2019 ◽  
Vol 19 (17) ◽  
pp. 1392-1406
Author(s):  
Suvarna G. Kini ◽  
Ekta Rathi ◽  
Avinash Kumar ◽  
Varadaraj Bhat

Diphenyl ethers (DPE) and its analogs have exhibited excellent potential for therapeutic and industrial applications. Since the 19th century, intensive research is perpetuating on the synthetic routes and biological properties of DPEs. Few well-known DPEs are Nimesulide, Fenclofenac, Triclosan, Sorafenib, MK-4965, and MK-1439 which have shown the potential of this moiety as a lead scaffold for different pharmacological properties. In this review, we recapitulate the diverse synthetic route of DPE moiety inclusive of merits and demerits over the classical synthetic route and how this moiety sparked an interest in researchers to discern the SAR (Structure Activity Relationship) for the development of diversified biological properties of DPEs such as antimicrobial, antifungal, antiinflammatory & antiviral activities.


Cellulose ◽  
2020 ◽  
Vol 27 (6) ◽  
pp. 3335-3357 ◽  
Author(s):  
Manjunatha Kempasiddaiah ◽  
Vishal Kandathil ◽  
Ramesh B. Dateer ◽  
B. S. Sasidhar ◽  
Shivaputra A. Patil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document