Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud

2011 ◽  
Vol 104 (3-4) ◽  
pp. 211-219 ◽  
Author(s):  
A. López ◽  
I. de Marco ◽  
B.M. Caballero ◽  
M.F. Laresgoiti ◽  
A. Adrados ◽  
...  
Author(s):  
Yiming Wang ◽  
Yang Li ◽  
Guijin Wang ◽  
Yunfei Wu ◽  
He Yang ◽  
...  

Author(s):  
Dan Kica Omol ◽  
Ongwech Acaye ◽  
David Fred Okot ◽  
Ocident Bongomin

Plastics have become an essential part of modern life today. The global production of plastics has gone up to 299 million tonnes in 2013, which has increased enormously in the present years. The utilization of plastics and its final disposal pose tremendous negative significant impacts on the environment. The present study aimed to investigate the thermal and catalytic pyrolysis for the production of fuel oil from the polyethene plastic wastes. The samples collection for both plastic wastes and clay catalyst, sample preparation and pyrolysis experiment for oil production was done in Laroo Division, Gulu Municipality, Northern Uganda Region, Uganda. Catalysts used in the experiment were acid-activated clay mineral and aluminium chlorides on activated carbon. The clay mineral was activated by refluxing it with 6M Sulphuric acid for 3 hours. The experiment was conducted in three different phases: The first phase of the experiment was done without a catalyst (purely thermal pyrolysis). The second phase involves the use of acid-activated clay mineral. The third phase was done using aluminium chlorides on activated carbon. Both phases were done at different heating rates. In purely thermal pyrolysis, 88 mL of oil was obtained at a maximum temperature of 39ºC and heating rates of 12.55ºC /minute and reaction time of 4 hours. Acid activated clay mineral yielded 100 mL of oil with the heating rates of 12.55ºC/minute and reaction time of 3 hours 30 minutes. While aluminium chlorides on activated carbon produced 105 mL of oil at a maximum temperature of 400ºC and heating rates of 15.5ºC /minute and reaction time of 3 hours 10 minutes. From the experimental results, catalytic pyrolysis is more efficient than purely thermal pyrolysis and homogenous catalysis (aluminium chlorides) shows a better result than solid acid catalyst (activated clay minerals) hence saving the energy needed for pyrolysis and making the process more economically feasible.


2022 ◽  
Vol 254 ◽  
pp. 115243
Author(s):  
Yujie Peng ◽  
Yunpu Wang ◽  
Linyao Ke ◽  
Leilei Dai ◽  
Qiuhao Wu ◽  
...  

2020 ◽  
Vol 34 (3) ◽  
pp. 3272-3283
Author(s):  
F. A. Agblevor ◽  
H. Wang ◽  
S. Beis ◽  
K. Christian ◽  
A. Slade ◽  
...  

2013 ◽  
Vol 27 (11) ◽  
pp. 6858-6865 ◽  
Author(s):  
Bhuvanesh K. Yathavan ◽  
F. A. Agblevor
Keyword(s):  
Red Mud ◽  

2012 ◽  
Vol 450-451 ◽  
pp. 281-285 ◽  
Author(s):  
Partogi H. Simatupang ◽  
Razie Hanafi ◽  
Bambang Sunendar Purwasasmita ◽  
Iswandi Imran ◽  
Ivindra Pane

Bauxite tailing waste or commonly known as red mud is considered to be a very hazardous material. The using of red mud to make alternative building material has been widely studied for many years. Geopolymer as one of the breakthrough in the searching of ordinary portland cement/concrete substitution provides many options and possibilities of using different types of pozzolanic or alumina-silica materials. In this study, the using of red mud in metakaoline-based geopolymer paste has been studied in three different curing conditions for 7 days of sample age. Each sample then characterized both, macroscopically and microscopically including compressive strength testing, SEM photograph, XRD and FTIR spectroscopy


2016 ◽  
Vol 30 (10) ◽  
pp. 7947-7958 ◽  
Author(s):  
Foster A. Agblevor ◽  
Douglas C. Elliott ◽  
Daniel M. Santosa ◽  
Mariefel V. Olarte ◽  
Sarah D. Burton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document