Insight into tri-coordinated aluminum dependent catalytic properties of dealuminated Y zeolites in oxidative desulfurization

2021 ◽  
Vol 288 ◽  
pp. 120022
Author(s):  
Zhiguo Zhu ◽  
Haikuo Ma ◽  
Weiping Liao ◽  
Pengpeng Tang ◽  
Kaixuan Yang ◽  
...  
2015 ◽  
Vol 90 (1-2) ◽  
pp. 127-135 ◽  
Author(s):  
Yu-Chiao Huang ◽  
Erh-Chieh Hsiang ◽  
Chien-Chih Yang ◽  
Ai-Yu Wang

2005 ◽  
Vol 277-279 ◽  
pp. 708-719
Author(s):  
Chang Seop Lee ◽  
Hee Jung Lee ◽  
Sung Woo Choi ◽  
Jahun Kwak ◽  
Charles H.F. Peden

A series of cation exchanged Y-zeolites were prepared by exchanging cations with various alkali (M+, M= Li, Na, K, Cs) metals. The structural and catalytic properties of the alkali metal exchanged Y-zeolites have been investigated by a number of analytical techniques. Comparative elemental analyses were determined by an Energy Dispersive Spectroscopy X-ray (EDS), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and X-ray Fluorescence (XRF) before and after cation substitution. The framework and non-framework Al coordination and the Si/Al ratios of the Y-zeolites were investigated by MAS Solid-State Nuclear Magnetic Resonance (NMR) spectroscopy. The Al NMR spectra were characterized by two 27Al resonance signals at 12 and 59 ppm, indicating the presence of the non-framework and framework Al respectively. The intensities of these resonances were used to monitor the amount of the framework and non-framework Al species in the series of exchanged zeolites. The 29Si NMR spectra were characterized by four resonance signals at -79, -84, -90, and -95 ppm. Changing the alkali metal cations in the exchanged Y-zeolites significantly altered the extent of the octahedral/tetrahedral coordination and the Si/Al ratio. The Fourier Transform Infrared spectra of the CO2 adsorbed on to the exchanged Y-zeolites showed a low frequency shift, as the atomic number of the exchanged alkali metal increased. In addition, the catalytic activity of these samples for NOx reduction were tested in combination with a non-thermal plasma technique and interpreted based on the above structural and spectroscopic information.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Riin Kont ◽  
Bastien Bissaro ◽  
Vincent G. H. Eijsink ◽  
Priit Väljamäe

AbstractLytic polysaccharide monooxygenases (LPMOs) are widely distributed in Nature, where they catalyze the hydroxylation of glycosidic bonds in polysaccharides. Despite the importance of LPMOs in the global carbon cycle and in industrial biomass conversion, the catalytic properties of these monocopper enzymes remain enigmatic. Strikingly, there is a remarkable lack of kinetic data, likely due to a multitude of experimental challenges related to the insoluble nature of LPMO substrates, like cellulose and chitin, and to the occurrence of multiple side reactions. Here, we employed competition between well characterized reference enzymes and LPMOs for the H2O2 co-substrate to kinetically characterize LPMO-catalyzed cellulose oxidation. LPMOs of both bacterial and fungal origin showed high peroxygenase efficiencies, with kcat/KmH2O2 values in the order of 105–106 M−1 s−1. Besides providing crucial insight into the cellulolytic peroxygenase reaction, these results show that LPMOs belonging to multiple families and active on multiple substrates are true peroxygenases.


2007 ◽  
Vol 79 (11) ◽  
pp. 1887-1894 ◽  
Author(s):  
Alberto de Angelis ◽  
Paolo Pollesel ◽  
Daniele Molinari ◽  
Wallace O'Neal Parker ◽  
Alessandra Frattini ◽  
...  

This paper deals with the catalytic properties of different supported heteropolyacids (HPAs), both molybdenum- and tungsten-based, in the oxidative desulfurization process of diesel. We are jointly developing a new oxidative desulfurization process, aimed at reducing the sulfur content in diesel to less than 10 ppm (parts per million) using in situ produced peroxides. In this new process, high-molecular-weight organosulfur compounds, such as 4,6-dimethyl-dibenzothiophene (DMDBT), difficult to be eliminated by conventional hydrodesulfurization, are oxidized to the corresponding sulfones and subsequently removed by adsorption. Molybdenum-based HPAs, with Keggin structure, proved to be the most active and selective catalysts for oxidizing DMDBT with on-stream lifetimes exceeding 1500 h time on stream (t.o.s.).


RSC Advances ◽  
2015 ◽  
Vol 5 (97) ◽  
pp. 79355-79360 ◽  
Author(s):  
Zhiguo Zhang ◽  
Jingwen Chen ◽  
Zongbi Bao ◽  
Ganggang Chang ◽  
Huabin Xing ◽  
...  

This paper presents a systematic investigation of the cyanosilylation of aldehydes with TMSCN by using several MOFs as catalysts.


2004 ◽  
Vol 24 (9) ◽  
pp. 3720-3733 ◽  
Author(s):  
Tara J. Moriarty ◽  
Delphine T. Marie-Egyptienne ◽  
Chantal Autexier

ABSTRACT Human telomerase is a multimer containing two human telomerase RNAs (hTRs) and most likely two human telomerase reverse transcriptases (hTERTs). Telomerase synthesizes multiple telomeric repeats using a unique repeat addition form of processivity. We investigated hTR and hTERT sequences that were essential for DNA synthesis and processivity using a direct primer extension telomerase assay. We found that hTERT consists of two physically separable functional domains, a polymerase domain containing RNA interaction domain 2 (RID2), reverse transcriptase (RT), and C-terminal sequences, and a major accessory domain, RNA interaction domain 1 (RID1). RID2 mutants defective in high-affinity hTR interactions and an RT catalytic mutant exhibited comparable DNA synthesis defects. The RID2-interacting hTR P6.1 helix was also essential for DNA synthesis. RID1 interacted with the hTR pseudoknot-template domain and hTERT's RT motifs and putative thumb and was essential for processivity, but not DNA synthesis. The hTR pseudoknot was essential for processivity, but not DNA synthesis, and processivity was reduced or abolished in dimerization-defective pseudoknot mutants. trans-acting hTERTs and hTRs complemented the processivity defects of RID1 and pseudoknot mutants, respectively. These data provide novel insight into the catalytic organization of the human telomerase complex and suggest that repeat addition processivity is one of the major catalytic properties conferred by telomerase multimerization.


Sign in / Sign up

Export Citation Format

Share Document