Exhaust emissions from liquid fuel micro gas turbine fed with diesel oil, biodiesel and vegetable oil

2013 ◽  
Vol 101 ◽  
pp. 349-356 ◽  
Author(s):  
David Chiaramonti ◽  
Andrea Maria Rizzo ◽  
Adriano Spadi ◽  
Matteo Prussi ◽  
Giovanni Riccio ◽  
...  
Author(s):  
Carmine Russo ◽  
Giulio Mori ◽  
Vyacheslav V. Anisimov ◽  
Joa˜o Parente

Chemical Reactor Modelling approach has been applied to evaluate exhaust emissions of the newly designed ARI100 (Patent Pending) recuperated micro gas turbine combustor developed by Ansaldo Ricerche SpA. The development of the chemical reactor network has been performed based on CFD reacting flow analysis, obtained with a global 2-step reaction mechanism, applying boundary conditions concerning the combustion chamber at atmospheric pressure, with 100% of thermal load and fuelled with natural gas. The network consists of 11 ideal reactors: 6 perfectly stirred reactors, and 5 plug flow reactors, including also 13 mixers and 12 splitters. Simulations have been conducted using two detailed reaction mechanisms: GRI Mech 3.0 and Miller & Bowman reaction mechanisms. Exhaust emissions have been evaluated at several operating conditions, obtained at different pressure, and considering different fuel gases, as natural gas and a high H2 content SYNGAS fuel. Furthermore, emissions at different thermal loads have been investigated when natural gas at atmospheric pressure is fuelled. Simulation results have been compared with those obtained from combustion experimental campaign. CO and NOx emissions predicted with CRM approach closely match experimental results at representative operating conditions. Ongoing efforts to improve the proposed reactors network should allow extending the range of applicability to those operating conditions whose simulation results are not completely satisfying. Given the small computational effort required, and the accuracy in predicting combustor experimental exhaust emissions, both CO and NOx, the CRM approach turnout to be an efficient way to reasonably evaluate exhaust emissions of a micro gas turbine combustor.


2009 ◽  
Vol 2009.14 (0) ◽  
pp. 145-146
Author(s):  
Masahiro FUKAI ◽  
Tadafumi KUROGI ◽  
Kenji AMAGAI ◽  
Motohide MURAYAMA

Author(s):  
A. Cavarzere ◽  
M. Morini ◽  
M. Pinelli ◽  
P. R. Spina ◽  
A. Vaccari ◽  
...  

The application of bio-fuels in automotive, power generation and heating applications is constantly increasing. However, the use of straight vegetable oil (pure or blended with diesel) to feed a gas turbine for electric power generation still requires experimental effort, due to the very high viscosity of straight vegetable oils. In this paper, the behavior of a Solar T-62T-32 micro gas turbine fed by vegetable oils is investigated experimentally. The vegetable oils are supplied to the micro gas turbine as blends of diesel and straight vegetable oils in different concentrations, up to pure vegetable oil. This paper describes the test rig used for the experimental activity and reports some experimental results, which highlight the effects of the different fuels on micro gas turbine performance and pollutant emissions. Moreover, an identification model is set up to predict the behavior of the considered gas turbine, when fuelled by vegetable oil, and the sensitivity of micro gas turbine thermodynamic measurements and emissions is quantitatively established.


2011 ◽  
Vol 77 (776) ◽  
pp. 911-915
Author(s):  
Kenji AMAGAI ◽  
Masahiro FUKAI ◽  
Tadafumi KUROGI ◽  
Motohide MURAYAMA

Author(s):  
Maria Cristina Cameretti ◽  
Raffaele Tuccillo ◽  
Renzo Piazzesi

The authors discuss in this paper some aspects related to the employment of liquid and gaseous bio-fuels in a micro-gas turbine. Besides the purpose of checking the effectiveness of supplying the micro-turbine with fuels from renewable sources, the attention is focused on the need of controlling the pollutant emission. To this aim, several solutions are experienced by means of CFD numerical simulations. For the liquid fuel supply, a new shape and location of the main fuel injector is combined with a modified position of the pilot injector. In the case of the biogas fuelling, an external EGR option is considered as activated. Both methods aim at the reduction of the thermal and prompt NO formation by approaching the flameless combustion concept.


Author(s):  
Maria Cristina Cameretti ◽  
Renzo Piazzesi ◽  
Fabrizio Reale ◽  
Raffaele Tuccillo

The external recirculation of exhaust gases represents an effective tool for approaching an almost flameless regime and controlling the nitric oxide formation, like demonstrated by a number of authors’ papers. Such a system penalizes, on the other hand, the micro-gas turbine performance due to the high EGR rates that are needed for the pollutant reduction. Basing on this consideration, the author consider, in this paper, the possibility of exploiting the internal combustion fluid-dynamics for achieving the same level of pollutant abatement. The comparison of the combustion regimes that are induced by either the external or internal EGR adoption are carried out on a CFD basis. The results refer to different load conditions of the micro-gas turbine, with both gaseous and liquid fuel supply.


Sign in / Sign up

Export Citation Format

Share Document