Waste heat recovery system for nuclear power plants using the gas hydrate heat cycle

2021 ◽  
pp. 116667
Author(s):  
Shin'ya Obara ◽  
Ryu Tanaka
2019 ◽  
Vol 9 (24) ◽  
pp. 5382 ◽  
Author(s):  
Jin Ham ◽  
Min Kim ◽  
Bong Oh ◽  
Seongmin Son ◽  
Jekyoung Lee ◽  
...  

After the Fukushima accident, the importance of an emergency power supply for a nuclear power plant has been emphasized more. In order to maximize the performance of the existing emergency power source in operating nuclear power plants, adding a waste heat recovery system for the emergency power source is suggested for the first time in this study. In order to explore the possibility of the idea, a comparison of six supercritical carbon dioxide (S-CO2) power cycle layouts recovering waste heat from a 7.2 MW alternate alternating current diesel generator (AAC DG) is first presented. The diesel engine can supply two heat sources to the waste heat recovery system: one from exhaust gas and the other from scavenged air. Moreover, a sensitivity study of the cycles for different design parameters is performed, and the thermodynamic performances of the various cycles were evaluated. The main components, including turbomachinery and heat exchangers, are designed with in-house codes which have been validated with experiment data. Based on the designed cycle and components, the bottoming S-CO2 cycle performance under part load operating condition of AAC DG is analyzed by using a quasi-steady state cycle analysis method. It was found that a partial heating cycle has relatively higher net produced work while enjoying the benefit of a simple layout and smaller number of components. This study also revealed that further waste heat can be recovered by adjusting the flow split merging point of the partial heating cycle.


Author(s):  
Ruiqiang Sun ◽  
Kaixuang Yang ◽  
Ming Liu ◽  
Junjie Yan

Abstract The temperature of SCO2 fed to the boiler in SCO2 coal-fired power plants is relatively high, ∼500 °C. It leads to high boiler exhaust temperature, which is ∼120 °C according to previous studies. Waste heat recovery from low temperature fluegas in SCO2 coal-fired power plants is a key issue to be addressed to enhance power plant efficiency and electrostatic precipitator performance. Therefore, systems of waste heat recovery from low-temperature fluegas were proposed in this study. To evaluate the economic performances of the proposed systems and obtain the best system configurations, economic and thermodynamic models were developed. Moreover, multi-parameter optimization model based on Genetic Algorithm was developed. The waste heat recovery system is proposed and optimized by considering coupling and matching of the air preheating process, heat regenerative process and fluegas cooling process. With a 1000MW SCO2 coal-fired power plant as the reference case, thermodynamic and economic analyses were carried out. Results show that when the low temperature economizer is integrated together with the main compressor intercooling and flue bypass ahead the air-preheater, the temperature of exhaust fluegas can be decreased to ∼95 °C and the power plant efficiency can be enhanced by 1.39%-pts compared with basic system. Through the economic model analysis, the system levelized cost of electricity is 0.04158 $ kW−1 h−1.


2014 ◽  
Vol 67 (1-2) ◽  
pp. 240-249 ◽  
Author(s):  
Gang Xu ◽  
Cheng Xu ◽  
Yongping Yang ◽  
Yaxiong Fang ◽  
Yuanyuan Li ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Gunabal S

Waste heat recovery systems are used to recover the waste heat in all possible ways. It saves the energy and reduces the man power and materials. Heat pipes have the ability to improve the effectiveness of waste heat recovery system. The present investigation focuses to recover the heat from Heating, Ventilation, and Air Condition system (HVAC) with two different working fluids refrigerant(R410a) and nano refrigerant (R410a+Al2O3). Design of experiment was employed, to fix the number of trials. Fresh air temperature, flow rate of air, filling ratio and volume of nano particles are considered as factors. The effectiveness is considered as response. The results were analyzed using Response Surface Methodology


2021 ◽  
Vol 234 ◽  
pp. 113947
Author(s):  
Alexandre Persuhn Morawski ◽  
Leonardo Rodrigues de Araújo ◽  
Manuel Salazar Schiaffino ◽  
Renan Cristofori de Oliveira ◽  
André Chun ◽  
...  

2012 ◽  
Vol 204-208 ◽  
pp. 4229-4233 ◽  
Author(s):  
Fang Tian Sun ◽  
Na Wang ◽  
Yun Ze Fan ◽  
De Ying Li

Drain water at 35°C was directly discharged into sewer in most of barbershop with Electric water heater. Heat utilization efficiency is lower, and energy grade match between input and output is not appropriate in most of barbershops. Two waste heat recovery systems were presented according to the heat utilization characteristics of barbershops and principle of cascade utilization of energy. One was the waste heat recovery system by water-to-water heat exchanger (WHR-HE), and the other is the waste heat recovery system by water-to-water heat exchanger and high-temperature heat pump (WHR-CHEHP). The two heat recovery systems were analyzed by the first and second Laws of thermodynamic. The analyzed results show that the energy consumption can be reduced about 75% for HR-HE, and about 98% for WHR-CHEHP. Both WHR-HE and WHR-CHEHP are with better energy-saving effect and economic benefits.


Sign in / Sign up

Export Citation Format

Share Document