scholarly journals Group theoretic method for unsteady free convection flow of a micropolar fluid along a vertical plate in a thermally stratified medium

2008 ◽  
Vol 32 (6) ◽  
pp. 1099-1114 ◽  
Author(s):  
I.A. Hassanien ◽  
M.A. Hamad
Author(s):  
Amena Ferdousi ◽  
MA Alim

A Numerical study on the effect of dissipation on a steady free convection flow through a porous vertical plate is made. The relevant non-leaner boundary equations are made dimensionless using specific non-dimensional variables. The corresponding non-similar partial differential equations are solved using implicit finite difference method with Keller-Box scheme. The results are then presented graphically and discussed thereafter. Keywords: porous plate; viscous dissipation; natural convection. DOI: http://dx.doi.org/10.3329/diujst.v6i1.9334 DIUJST 2011; 6(1): 52-59


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
Arshad Khan ◽  
Ilyas Khan ◽  
Sharidan Shafie

Effects of Newtonian heating and mass diffusion on magnetohydrodynamic free convection flow over a vertical plate that applies arbitrary shear stress to the fluid is studied. The fluid is considered electrically conducting and passing through a porous medium. The influence of thermal radiation in the energy equations is also considered. General solutions of the problem are obtained in closed form using the Laplace transform technique. They satisfy the governing equations, initial and boundary conditions and can set up a huge number of exact solutions correlatives to various fluid motions. The effects of various parameters on velocity profiles are shown graphically and discussed in details


2013 ◽  
Vol 62 (3) ◽  
Author(s):  
Muhamad Najib Zakaria ◽  
Abid Hussanan ◽  
Ilyas Khan ◽  
Sharidan Shafie

The present paper is on study of the influence of radiation on unsteady free convection flow of Brinkman type fluid near a vertical plate containing a ramped temperature profile. Using the appropriate variables, the basic governing equations are reduced to nondimensional equations valid with the imposed initial and boundary conditions. The exact solutions are obtained by using Laplace transform technique. The influence of radiation near a ramped temperature plate is also compared with the flow near a plate with constant temperature. The numerical computations are carried out for various values of the physical parameters such as velocity, temperature, skin friction and Nusselt number and presented graphically.


Sign in / Sign up

Export Citation Format

Share Document