Simultaneous crosslinking induces macroscopically phase-separated microgel from a homogeneous mixture of multiple polymers

2021 ◽  
Vol 22 ◽  
pp. 100937
Author(s):  
Yuta Kurashina ◽  
Mio Tsuchiya ◽  
Atsushi Sakai ◽  
Tomoki Maeda ◽  
Yun  Jung Heo ◽  
...  
Keyword(s):  
2019 ◽  
Vol 2 (2) ◽  
pp. 49-50
Author(s):  
Madihah Khan ◽  
Alyxandra Thiessen ◽  
I Teng Cheong ◽  
Sarah Milliken ◽  
Jonathan G. C. Veinot

Current LED lights are created with quantum dots made of metals like selenium, tellurium, and cadmium which can be toxic. Silicon is used as a non-toxic substance and is the second most abundant element in the earth's crust. When silicon is prepared at a nanometer size, unique luminesce optical properties emerge that can be tuned using sized surface chemistry. Therefore, silicon nanoparticles can be used as an alternative emitter for LED lights. To produce hydride-terminated silicon nanoparticles we must synthesize the particles. Hydrogen silsesquioxane (HSQ) is processed at 1100 °C for one hour causing Si to cluster and form a SiO2 matrix, also known as the composite. The composite is then manually crushed in ethanol. The solution is further ground using glass beads, then filtered to get the composite powder. The final step is the HF etching. The hydride-terminated particles are then functionalized using three different methods to synthesize silicon nanoparticle-polystyrene hybrids, which determine the magnitude of luminosity and the quality of the hybrids. We spin coat each method and results were analyzed. Method 1 uses heat to functionalize hydride-terminated silicon nanoparticles with styrene. This process also causes styrene to attach to styrene to form a polystyrene chain. Method 1 gave a homogeneous mixture which yielded a consistent, bright and homogenous film. In method 2, dodecyl-terminated silicon nanoparticles are mixed with premade polystyrene. While this method gave better control of the amount of silicon nanoparticles inside the polymer hybrid, a homogeneous mixture was not created due to the different structures of polystyrene and dodecyl chains. Method 3 has dodecyl-terminated silicon with in-situ styrene polymerization. It generated a homogeneous mixture. The in-situ polymerization stabilizes the particles, allowing for brighter luminescence. Because of the stability and lower molecular weight, the mixture was easier to dissolve. We concluded that the different methods resulted in different polymer molecular weights and this created distinct properties between the polymer hybrids when spin-coating.    


2021 ◽  
Author(s):  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Masao Ono

Abstract For subsea mining, it is important to predict the pressure loss in oscillating pipes for the safe and reliable operation of ore lifting as well as the design of lifting system. In the present paper, the authors focused on the internal flow in vertical lifting pipe oscillating in the axial direction and carried out slurry transport experiment to investigate the effects of pipe oscillation on the pressure loss. The spherical alumina beads and glass beads were used as the solid particles in the experiment, and the oscillating periods and amplitudes of pipe model as well as the solid concentrations and the mean slurry velocities were varied. The time-averaged components of hydraulic gradient calculated by the prediction method for the steady flow proposed in the past by the authors agreed well with the experimental ones. As for the fluctuating components of hydraulic gradient, the calculation results using a homogeneous mixture model were compared with the experimental data. The comparison result indicated that the homogeneous mixture model would be applicable to the prediction of pressure loss in the vertical pipe oscillating in the axial direction.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Dorien O. Villafranco ◽  
Ankush Gupta ◽  
Emily M. Ryan ◽  
R. Glynn Holt ◽  
Sheryl M. Grace

Abstract The homogeneous mixture method (HMM) is a popular class of models used in the computational prediction of cavitation. Several cavitation models have been developed for use with HMM to govern the development and destruction of vapor in a fluid system. Two models credited to Kunz and Schnerr–Sauer are studied in this paper. The goal of this work is to provide an assessment of the two cavitation submodels in their ability to predict cavitation in nozzle flow. Validation data were obtained via experiments which employ both passive cavitation detection, (PCD) via acoustic sensing and optical cavitation detection (OCD) via camera imaging. The experiments provide quantitative information on cavitation inception and qualitative information on the vapor in the nozzle. The results show that initial vapor formation is not predicted precisely but within reason. A sensitivity analysis of the models to input parameters shows that the Schnerr–Sauer method does not depend upon the estimation of nuclei size and number density. Small changes in the vapor formation rate but not the total vapor volume can be seen when weighting parameters are modified. In contrast, changes to the input parameters for the Kunz model greatly change the final total vapor volume prediction. The assessment also highlights the influence of vapor convection within the method. Finally, the analysis shows that if the fluid and nozzle walls do not support nuclei larger than 40 μm, the methods would still predict cavitation when indeed there would be none in practice.


Sign in / Sign up

Export Citation Format

Share Document