Dynamic behaviors of blade cavitation in a water jet pump with inlet guide vanes: Effects of inflow non-uniformity and unsteadiness

2021 ◽  
Vol 117 ◽  
pp. 102889
Author(s):  
Guoshou Zhao ◽  
Ning Liang ◽  
Yu Zhang ◽  
Linlin Cao ◽  
Dazhuan Wu
2017 ◽  
Vol 17 (17) ◽  
pp. 1-10
Author(s):  
Mostafa Samy ◽  
Mohamed Metwally ◽  
Wael Elmayyah ◽  
Ibrahem Elsherif

Author(s):  
Peng Wang ◽  
Mehrdad Zangeneh ◽  
Bryn Richards ◽  
Kevin Gray ◽  
James Tran ◽  
...  

Engine downsizing is a modern solution for the reduction of CO2 emissions from internal combustion engines. This technology has been gaining increasing attention from industry. In order to enable a downsized engine to operate properly at low speed conditions, it is essential to have a compressor stage with very good surge margin. The ported shroud, also known as the casing treatment, is a conventional way used in turbochargers to widen the working range. However, the ported shroud works effectively only at pressure ratios higher than 3:1. At lower pressure ratio, its advantages for surge margin enhancements are very limited. The variable inlet guide vanes are also a solution to this problem. By adjusting the setting angles of variable inlet guide vanes, it is possible to shift the compressor map toward the smaller flow rates. However, this would also undermine the stage efficiency, require extra space for installing the inlet guide vanes, and add costs. The best solution is therefore to improve the design of impeller blade itself to attain high aerodynamic performances and wide operating ranges. This paper reports a recent study of using inverse design method for the redesign of a centrifugal compressor stage used in an electric supercharger, including the impeller blade and volute. The main requirements were to substantially increase the stable operating range of the compressor in order to meet the demands of the downsized engine. The three-dimensional (3D) inverse design method was used to optimize the impeller geometry and achieve higher efficiency and stable operating range. The predicted performance map shows great advantages when compared with the existing design. To validate the computational fluid dynamics (CFD) results, this new compressor stage has also been prototyped and tested. It will be shown that the CFD predictions have very good agreement with experiments and the redesigned compressor stage has improved the pressure ratio, aerodynamic efficiency, choke, and surge margins considerably.


Author(s):  
Peixin Hu ◽  
◽  
M Zangeneh ◽  
Keyword(s):  
Jet Pump ◽  

1967 ◽  
Vol 9 (4) ◽  
pp. 265-277 ◽  
Author(s):  
A. D. S. Carter

The layout of a hovercraft leads naturally to the choice of a radial outward flow fan, but the aerodynamic requirements are more stringent than those normally associated with industrial fans. In this paper a blade loading criterion used extensively in axial flow compressor practice has been adapted to the more general case of radial flow fans. Using this criterion maximum fluid deflections and maximum temperature rise coefficients have been calculated. It is shown that fluid deflections in radial fans should be substantially lower than those in axial flow machines. For high work output the ratio of rotor outside diameter to rotor inside diameter should be as close to unity as is mechanically possible. Inlet guide vanes would be of no benefit to the conventional industrial type centrifugal fan, but for such applications as hovercraft inlet guide vanes could be most beneficial. The paper outlines those areas in which further research is necessary fully to confirm the approach, and hence the quantitative values, given in this paper.


1980 ◽  
Vol 102 (4) ◽  
pp. 943-950 ◽  
Author(s):  
N. Kyrtatos ◽  
N. Watson

A design procedure is described which allows the development of an arrangement to aerodynamically impart prewhirl to the inflow of a compressor. The procedure uses compressor performance data and inducer inlet flow distributions together with a mathematical model of the aerodynamic prewhirl inducing arrangement to arrive at the parameters which completely define an arrangement suitable for a particular compressor. The application of the procedure to design an arrangement for a small turbocharger compressor is presented. The effect of the aerodynamically imparted prerotation on the compressor performance was found to be similar to that produced by inlet guide vanes.


Author(s):  
R. C. Reisweber

In development of an axial-flow boiler supercharger, a test program on the compressor inlet was carried out. Tests were run using a test compressor aerodynamically identical to the first three stages of the supercharger compressor. Prototype compressor inlet was compared to an axial inlet, and also to several modified inlets. While the prototype inlet showed considerably more distortion ahead of the inlet guide vanes than the axial inlet, the inlet guide vanes removed most of the distortion. As a result, overall performance of all inlet configurations was essentially the same.


Sign in / Sign up

Export Citation Format

Share Document