ported shroud
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Pranav Sriganesh ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Keith Miazgowicz
Keyword(s):  

2020 ◽  
pp. 146808742091660
Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M Allport ◽  
Simon Barrans ◽  
Ambrose K Nickson

Developments in materials, manufacturing and computing methods have catalysed the generation of efficient compressor designs with higher specific power outputs. Centrifugal compressors have become pervasive in environments demanding a combination of higher power with smaller sizes such as unmanned aerial vehicles, micro gas turbines and turbochargers. These compressors are expected to perform optimally in a range of operational speeds and mass flow states with low acoustic emissions. The impact of operating speed on the flow and acoustic characteristics of a ported shroud compressor has been explored in this work. The operation of the open and blocked configurations of the compressor at the design and near surge points each of a lower and a higher speedline was numerically and experimentally investigated. Comparing the results, the model was shown to predict the operation of the compressor for both configurations at the investigated operating points satisfactorily in terms of both performance and dominant acoustic features. With an increase in the velocity and the Mach number due to increased operational speed, changes in the flow behaviour in the inducer and diffuser were observed. An increase in operational speed was shown to generally increase the overall acoustic emission of the compressor for both configurations. The number of distinct tones in the acoustic output and their magnitude were also seen to be a function of operating speed.


2019 ◽  
Vol 21 (6) ◽  
pp. 998-1011 ◽  
Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M Allport ◽  
Simon Barrans ◽  
Ambrose K Nickson

Centrifugal turbomachines of smaller sizes operating at higher speeds have become pervasive due to the increased specific power and reliability achieved by improvements in manufacturing, materials and computational methods. The presence of these small turbomachines, specifically compressors, in helicopters, unmanned aerial vehicles, auxiliary power units, turbochargers and micro gas turbines necessitates superior aerodynamic performance over a broad operational range, which is widely achieved by ported shroud casing designs. In addition to aerodynamic performance, acoustic emissions have become a critical aspect of design for these small centrifugal compressors due to high operational speeds. Furthermore, the literature on the acoustic effects of the casing treatment is rather limited. Therefore, the impact of ported shroud casing treatment on the acoustic and flow features of the compressor operating at the design and near-surge conditions have been quantified by numerically modelling the open and blocked configuration of the compressors. Upon comparing with experimental results, the numerical spectra are shown to capture the differences between the two configurations at the investigated operating points with reasonable accuracy. Although the casing treatment is generally seen to decrease the overall acoustic emission of the compressor at both operating conditions, increased propagation of tonal content in the direction upstream to the impeller is observed, particularly for design operation. Broadband characteristics in the lower and medium frequency regions usually associated with near-surge operation including ‘whoosh’ noise are observed to be alleviated by the ported shroud casing treatment.


Author(s):  
Suheab Thamizullah ◽  
Abdul Nassar ◽  
Antonio Davis ◽  
Gaurav Giri ◽  
Leonid Moroz

Abstract Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off-design operating conditions. When used, the widest operating range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, by permitting flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology, on a speed-line, at near optimal operating condition, near choke operating condition and near surge operating condition is investigated. The ported shroud (PS) self-recirculating casing treatment is widely used to delay the onset of surge by enhancing the aerodynamic stability of the turbocharger compressor. While the ported shroud design delays surge, it usually comes with a small penalty in efficiency. This research involves designing a single-stage centrifugal compressor for the given specifications, considering the application of an automotive turbocharger. The ported shroud was then introduced in the centrifugal compressor. The performance characteristics were obtained, both at the design and at off-design conditions, both with and without the ported shroud. The performance was compared at various off-design operating speed lines. The entire study, from designing the compressor to optimizing the ported shroud configuration, was performed using the commercial AxSTREAM® software platform. Parametric studies were performed to study the effect of ported shroud axial location along the blade axial length on the operating range and performance. The baseline design, without the ported shroud (P0), and the final geometry with it for all PS inlet axial locations (P1 to P5) were analysed using a commercial CFD package and the results were compared with those from the streamline solver.


2019 ◽  
Vol 148 ◽  
pp. 434-447 ◽  
Author(s):  
S. Sharma ◽  
A. Broatch ◽  
J. García-Tíscar ◽  
A.K. Nickson ◽  
J.M. Allport

2018 ◽  
Vol 21 (8) ◽  
pp. 1454-1468 ◽  
Author(s):  
Sidharath Sharma ◽  
Alberto Broatch ◽  
Jorge García-Tíscar ◽  
John M Allport ◽  
Ambrose K Nickson

In this article, the acoustic characterisation of a turbocharger compressor with ported shroud design is carried out through the numerical simulation of the system operating under design conditions of maximum isentropic efficiency. While ported shroud compressors have been proposed as a way to control the flow near unstable conditions in order to obtain a more stable operation and enhance deep surge margin, it is often assumed that the behaviour under stable design conditions is characterised by a smooth, non-detached flow that matches an equivalent standard compressor. Furthermore, research is scarce regarding the acoustic effects of the ported shroud addition, especially under the design conditions. To analyse the flow field evolution and its relation with the noise generation, spectral signatures using statistical and scale-resolving turbulence modelling methods are obtained after successfully validating the performance and acoustic predictions of the numerical model with experimental measurements. Propagation of the frequency content through the ducts has been estimated with the aid of pressure decomposition methods to enhance the content coming from the compressor. Expected acoustic phenomena such as ‘buzz-saw’ tones, blade passing peaks and broadband noise are correctly identified in the modelled spectrum. Analysis of the flow behaviour in the ported shroud shows rotating structures through the slot that may impact the acoustic and vibration response. Further inspection of the pressure field through modal decomposition confirms the influence of the ported shroud cavity in noise generation and propagation, especially at lower frequencies, suggesting that further research should be carried out on the impact these flow enhancement solutions have on the noise emission of the turbocharger.


Author(s):  
Sidharath Sharma ◽  
Jorge García-Tíscar ◽  
John M. Allport ◽  
Martyn L. Jupp ◽  
Ambrose K. Nickson

Ported shroud casing treatment is widely used to delay the onset of surge and thereby enhancing the aerodynamic stability of a centrifugal compressor by recirculating the low momentum fluid in the blade passage. Performance losses associated with the use of recirculation casing treatment are well established in the literature and this is an area of active research. The other, less researched aspect of the casing treatment is its impact on the acoustics of the compressor. This work investigates the impact of ported shroud casing treatment on the acoustic characteristics of the compressor. The flow in two compressor configurations viz. with and without casing treatment operating at the design operating conditions of an iso-speed line are numerically modelled and validated with experimental data from gas stand measurements. The pressure fluctuations calculated as the flow solution are used to compute the spectral signatures at multiple locations to investigate the acoustic phenomenon associated with each configuration. Propagation of the frequency content through the ducts has been estimated with the aid of method of characteristics to enhance the content coming from the compressor. Expected tonal aerodynamic noise sources such as monopole (buzz-saw tones) and dipole (Blade Pass Frequency) are clearly identified in the acoustic spectra of the two configurations. The comparison of two configurations shows higher overall levels and tonal content in the case of a compressor with ported shroud operating at design conditions due to the presence of ‘mid-tones’.


Author(s):  
Christoph Schäfer ◽  
Mathias Bogner ◽  
Jan Ehrhard ◽  
Matthias Dunzer

The emission laws for internal combustion engines become more and more strict. Therefore, new concepts have to be implemented. In the so called Miller approach the intake valve is closed before the intake stroke is finished, thus resulting in a lower combustion end temperature and pressure. As a negative result, the specific power of the engine is reduced. This disadvantage has to be compensated by an increased boost pressure delivered by a turbocharger compressor. For the turbomachinery this means for low end torque engine operation a compressor operating point at high pressure ratio and low mass flow. Thus an increased risk for surge results. A cost-effective measure to establish an utilizable compressor map in this regime is a ported shroud casing treatment. Here, a circumferential cavity connects the low channel at the inducer with the compressor housing inflow, allowing fluid to recirculate at low mass flows. Thereby, the gross inducer mass flow is increased, the flow stabilized and hence the surge line improved. In this paper, a ported shroud casing treatment is developed employing CFD. The aim is to improve the surge line as well as the stability of the compressor characteristics and to minimize the impact on compressor efficiencies at high flows as well as the acoustic behaviour at the same time. In order to validate the performance of the design, standard hot gas measurements as well as acoustic measurements are conducted and analyzed. Furthermore, the impact of a commonly applied 90° inflow bend on the performance of the ported shroud cavity is investigated by experimental data.


Author(s):  
Kishore Kumar Chandramohan ◽  
Kirubakaran Purushothaman ◽  
Vidyadheesh Pandurangi ◽  
Kishore Prasad Deshkulkarni

High speed centrifugal compressors are used in turbochargers and in small gas turbine engines that typically power cruise missiles, helicopters and auxiliary power units (APU). Centrifugal compressors have wider operating range compared to axial compressor and are compact. Though centrifugal compressors having a pressure ratio of the order of 12:1 per stage have been demonstrated with reasonably good isentropic efficiencies, achieving a wider operating range has always been a challenge. A Turbocharger that needs to be designed to function both at sea-level and 5 km altitude conditions, requires a wider compressor map to accommodate the diesel engine operating line. A wider compressor map can be achieved by various techniques. The approaches used in the present study include providing pinch in the diffuser entry region and ported shroud arrangement in the compressor casing. A parametric study has been carried out by varying geometric parameters and an appropriate configuration that offers lower total pressure loss and better diffuser pressure recovery is chosen. The flow mechanisms responsible for better performance is investigated numerically for various configurations with diffuser pinch. To further enhance the operating range, a ported shroud configuration in the compressor housing is designed and analysed with the finalized diffuser pinch. Results of computational analysis for different ported shroud slot geometries have been studied numerically and are presented. Two configurations have been tested in a turbo-drive based test rig. The first configuration is only with diffuser pinch and the second configuration is with diffuser pinch and ported shroud. The extent of map width enhancement obtained by each technique is presented and compared with numerical analysis. The test results show good match with the predicted trend and confirms that diffuser pinch and ported shroud configurations offer significant enhancement in achieving a wider operating range. The flow mechanisms responsible are discussed in detail in the paper.


Sign in / Sign up

Export Citation Format

Share Document