Redesign of a Compressor Stage for a High-Performance Electric Supercharger in a Heavily Downsized Engine

Author(s):  
Peng Wang ◽  
Mehrdad Zangeneh ◽  
Bryn Richards ◽  
Kevin Gray ◽  
James Tran ◽  
...  

Engine downsizing is a modern solution for the reduction of CO2 emissions from internal combustion engines. This technology has been gaining increasing attention from industry. In order to enable a downsized engine to operate properly at low speed conditions, it is essential to have a compressor stage with very good surge margin. The ported shroud, also known as the casing treatment, is a conventional way used in turbochargers to widen the working range. However, the ported shroud works effectively only at pressure ratios higher than 3:1. At lower pressure ratio, its advantages for surge margin enhancements are very limited. The variable inlet guide vanes are also a solution to this problem. By adjusting the setting angles of variable inlet guide vanes, it is possible to shift the compressor map toward the smaller flow rates. However, this would also undermine the stage efficiency, require extra space for installing the inlet guide vanes, and add costs. The best solution is therefore to improve the design of impeller blade itself to attain high aerodynamic performances and wide operating ranges. This paper reports a recent study of using inverse design method for the redesign of a centrifugal compressor stage used in an electric supercharger, including the impeller blade and volute. The main requirements were to substantially increase the stable operating range of the compressor in order to meet the demands of the downsized engine. The three-dimensional (3D) inverse design method was used to optimize the impeller geometry and achieve higher efficiency and stable operating range. The predicted performance map shows great advantages when compared with the existing design. To validate the computational fluid dynamics (CFD) results, this new compressor stage has also been prototyped and tested. It will be shown that the CFD predictions have very good agreement with experiments and the redesigned compressor stage has improved the pressure ratio, aerodynamic efficiency, choke, and surge margins considerably.

Author(s):  
Peng Wang ◽  
Mehrdad Zangeneh ◽  
Bryn Richards ◽  
Kevin Gray ◽  
James Tran ◽  
...  

Engine downsizing is a modern solution for the reduction of CO2 emissions from internal combustion engines. This technology has been gaining increasing attention from industry. In order to enable a downsized engine to operate properly at low speed conditions, it is essential to have a compressor stage with very good surge margin. The ported shroud, also known as the casing treatment, is a conventional way used in turbochargers to widen the working range. However, the ported shroud works effectively only at pressure ratios higher than 3:1. At lower pressure ratio its advantages for surge margin enhancements are very limited. The variable inlet guide vanes are also a solution to this problem. By adjusting the setting angles of VIGVs, it is possible to shift the compressor map towards the smaller flow rates. However, this would also undermine the stage efficiency, require extra space for installing the IGVs, and add costs. The best solution is therefore to improve the design of impeller blade itself to attain high aerodynamic performances and wide operating ranges. This paper reports a recent study of using inverse design method for the redesign of a centrifugal compressor stage used in an electric supercharger, including the impeller blade and volute. The main requirements were to substantially increase the stable operating range of the compressor in order to meet the demands of the downsized engine. The 3D inverse design method was used to optimize the impeller geometry and achieve higher efficiency and stable operating range. The predicted performance map shows great advantages when compared with the existing design. To validate the CFD results, this new compressor stage has also been prototyped and tested. It will be shown that the CFD predictions have very good agreement with experiments and the redesigned compressor stage has improved the pressure ratio, aerodynamic efficiency, choke and surge margins considerably.


Author(s):  
Jiajian Tan ◽  
Datong Qi ◽  
Rui Wang

Variable inlet guide vanes (VIGVs) can regulate pressure ratio and mass flow at constant rotational speed in centrifugal compressors as a result of inducing a controlled prewhirl in front of impellers. Radial inlets and VIGVs are typical upstream components in front of the first-stage impellers in many pipeline and multistage centrifugal compressors. However, previous investigations on VIGVs in centrifugal compressors were mostly conducted under the condition of axial inlets, and present work aims to focus on the effects of radial inlet on the VIGVs performance of a centrifugal compressor stage. The axial inlet stage model was compared with the radial inlet stage model using numerical flow simulation. The flow from the radial inlet was nonuniform in both circumferential and radial direction, thus the VIGVs, the impeller, the vaneless diffuser, and the return vane channel were modeled with fully 360-deg passages. The three-dimensional flow field was numerically simulated with FINE™/Turbo at VIGVs setting angles range from −20° to +60°. The overall stage performance parameters were obtained by integrating the field quantities. The simulation results show that the performance of VIGVs was significantly degraded by its inlet flow distortions resulting from a radial inlet. The stage performance map indicates that the overall stage polytropic efficiency decreased by an average of 2.5% and total pressure ratio decreased by an average of 1% because of the flow distortions at different VIGVs setting angles, in comparison with the axial stage model.


Author(s):  
J Tan ◽  
X Wang ◽  
D Qi ◽  
R Wang

Variable inlet guide vanes (VIGVs) can regulate pressure ratio and mass flow at constant rotational speed in centrifugal compressors as a result of inducing a controlled prewhirl in front of impellers. Radial inlets and VIGVs are typical upstream components in front of the first-stage impellers in many industrial centrifugal compressors. However, previous investigations on VIGVs in centrifugal compressors were mostly conducted under the condition of axial inlets, and this study aims to focus on the effects of radial inlet on the VIGVs performance of a centrifugal compressor stage. The axial inlet stage model is compared with the radial inlet stage model with splitters using numerical flow simulation. The flow from the radial inlet was non-uniform in both circumferential and radial directions; thus, the VIGVs, the impeller, the vaneless diffuser, and the return vane channel are modelled with fully 360° passages. The three-dimensional (3D) flow field is numerically simulated at VIGVs setting angles ranging from - 20° to 60°. The overall stage performance parameters are obtained by integrating the field quantities. Though the splitters are equipped in the radial inlet, the overall stage polytropic efficiency decreases by an average of 4 per cent and total pressure ratio decreases by an average of 3.3per cent in comparison with the axial stage model. This can be attributed to the effect of both flow non-uniformity induced by radial inlet and flow loss in the radial inlet at different VIGV setting angles. The flow loss in the radial inlet with splitters is the main reason of the stage performance decrease compared with the flow non-uniformity. The simulation results show that the performance of VIGVs is degraded by its inlet flow distortions resulting from a radial inlet. The results in this study can be applied to centrifugal compressor design and optimization.


Author(s):  
A. R. Wadia ◽  
P. N. Szucs ◽  
D. W. Crall ◽  
D. C. Rabe

Previous experimental and analytical studies conducted to compare the performance of transonic swept rotors in single stage fans have demonstrated the potential of significant improvements in both efficiency and stall margin with forward swept blading. This paper extends the assessment of the payoff derived from forward sweep with respect to aerodynamic performance and stability to multistage configurations. The experimental investigation compares, on a back-to-back test basis, two builds of an advanced good efficiency, high pressure ratio, two-stage fan configuration tested alternately with a radial and a forward swept stage 1 blade. In the two-stage evaluations, the testing was extended to include the effect on inlet flow distortion. While the common second stage among the two builds prevented the overall fan from showing clean inlet performance and stability benefits with the forward swept rotor 1, this configuration did demonstrate superior front stage efficiency and tolerance to inlet distortion. Having obtained an already low distortion sensitivity with the radial rotor 1 configuration relative to current production military fan standards, the sensitivity to inlet distortion was halved with the forward swept rotor 1 configuration. In the case of the 180-degree one-per-rev distortion pattern, the two-stage configuration was evaluated both with and without inlet guide vanes (IGVs). The presence of the inlet guide vanes had a profound impact in lowering the two stage fan’s sensitivity with inlet distortion.


Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

The introduction of variable inlet guide vanes (VIGVs) upfront of a compressor stage affects performance and permits tuning for off-design conditions. This is of great interest for emerging technology related to subsea compression. Unprocessed gas from the wellhead will contain liquid condensate, which affects the operational condition of the compressor. To investigate the effect of guide vanes on volume flow and pressure ratio in a wet gas compressor, VIGVs are implemented upfront of a centrifugal compressor stage to control the inlet flow direction. The guide vane geometry and test rig setup have previous been presented. This paper documents how changing the VIGV setting affects compressor performance under dry and wet operating conditions. The reduced performance effect and operating range at increased liquid content are of specific interest. Also documented is the change in the VIGV effect relative to the setting angle.


Author(s):  
H. Watanabe ◽  
M. Zangeneh

The application of sweep in the design of transonic fans has been shown to be an effective method of controlling the strength and position of the shock wave at the tip of transonic fan rotors, and the control of corner separations in stators. In rotors sweep can extend the range significantly. However, using sweep in conventional design practice can also result in a change in specific work and therefore pressure ratio. As a result, laborious iterations are required in order to recover the correct specific work and pressure ratio. In this paper, the blade geometry of a transonic fan is designed with sweep using a 3D inverse design method in which the blade geometry is computed for a specified distribution of blade loading. By comparing the resulting flow field in the conventionally and inversely designed swept rotors, it is shown that it is possible to apply sweep without the need to iterate to maintain pressure ratio and specific work when using the inverse method.


1991 ◽  
Vol 113 (4) ◽  
pp. 696-702 ◽  
Author(s):  
C. Rodgers

This paper describes the results of compressor rig testing with a moderately high specific speed, high inducer Mack number, single-stage centrifugal compressor, with a vaned diffuser, and adjustable inlet guide vanes (IGVs). The results showed that the high-speed surge margin was considerably extended by the regulation of the IGVs, even though the vaned diffuser was apparently operating stalled. Simplified one-dimensional analysis of the impeller and diffuser performances indicated that at inducer tip Mach numbers approaching and exceeding unity, the high-speed surge line was triggered by inducer stall. Also, IGV regulation increased impeller stability. This permitted the diffuser to operate stalled, providing the net compression system stability remained on a negative slope.


Author(s):  
J. W. Salvage

Higher noise levels resulted when a compressor was scaled to larger capacity. The machine’s sound pressure level was relieved by increasing the distance between the impeller blade tip and diffuser leading edge. However, the part-load surge line deteriorated severely as a consequence. A variable geometry pipe diffuser solved this problem, permitting operation at stringent off-design conditions. The addition of a variable diffuser permits compressor selection very near its most efficient full-load operating point, without regard for limitations normally imposed by part-load requirements. The principal lessons learned during aerodynamic design refinement include (a) how performance and surge depend upon positioning the variable inlet guide vanes and variable diffuser, and (b) how to define simultaneous variation of inlet guide vanes and diffuser for specific operational objectives. Generally, each operating point requires a unique setting of the variable components to achieve maximum efficiency. However, linked movement is shown to yield both a satisfactory surge line and improved performance for most applications when compared to a compressor without the variable geometry pipe diffuser.


Author(s):  
Yubao Tian ◽  
Yonghong Tang ◽  
Zhiheng Wang ◽  
Guang Xi

A shrouded centrifugal compressor model stage used for 120,000 m3/h oxygen production air separation unit was designed and tested at several IGV stagger angles from −15° to +60° and machine Mach number from 0.97 to 0.5. Present research works aimed to assess the influence of the adjustable IGVs and the IGV modeling on the shrouded centrifugal compressor performance characteristics and inlet flow field and to explore the effect factors of the CFD prediction accuracy and compressor stability at different IGV stagger angles. The measured results show that the model stage with 0° IGV stagger angle yields almost the same stagnation pressure ratio performance as the stage-only model but at a lower peak isentropic efficiency. With an appropriate IGV stagger angle setting ranging from −15° to +30°, the compressor stability could be efficiently enhanced. Numerical studies indicate that a large IGV hub gap may lead to a significant lag effect on the flow angle generated by the inlet guide vanes when increasing the IGV stagger angle.


Sign in / Sign up

Export Citation Format

Share Document