The role of attentional bias on the effect of food advertisements on actual food intake among children

Appetite ◽  
2014 ◽  
Vol 83 ◽  
pp. 347
Author(s):  
F. Folkvord ◽  
D. Anschutz ◽  
M. Buijzen
Appetite ◽  
2015 ◽  
Vol 84 ◽  
pp. 251-258 ◽  
Author(s):  
Frans Folkvord ◽  
Doeschka J. Anschütz ◽  
Reinout W. Wiers ◽  
Moniek Buijzen

1986 ◽  
Vol 251 (3) ◽  
pp. G362-G369
Author(s):  
K. R. Feingold ◽  
G. Zsigmond ◽  
S. R. Lear ◽  
A. H. Moser

The mechanism by which diabetes results in an increase in small intestinal cholesterol synthesis is unknown. Previous studies have demonstrated that limiting food intake prevents the increase in intestinal cholesterol synthesis, and it has therefore been proposed that the stimulation of cholesterol synthesis in the small intestine is secondary to the hyperphagia that is associated with poorly controlled diabetes. To shed further light on the role of hyperphagia we have studied the effect on cholesterol synthesis of a variety of conditions that increase food intake. In third-trimester pregnant animals, lactating animals, obese animals, and in animals infused intragastrically with 16 g glucose/day vs. 8 g glucose/day, we have observed that an increase in food intake is associated with an increase in small intestinal cholesterol synthesis. Furthermore, these findings support the hypothesis that hyperphagia is the chief stimulus for the increase in cholesterol synthesis in the small intestine of diabetic animals. Additional studies have demonstrated that simply increasing the bulk of food ingested by adding Alphacel to the diet does not alter cholesterol synthesis in the small intestine. Lastly, in animals in whom Thiry fistulas were surgically constructed we observed that cholesterol synthesis is increased in the diabetic animals in both the segment of the small intestine in contact with the food stream and the segment of the small intestine that is excluded from contact. This observation suggests that the direct contact of the intestinal mucosa with caloric sources is not the sole trigger for increasing small intestinal cholesterol synthesis in hyperphagic diabetic animals.(ABSTRACT TRUNCATED AT 250 WORDS)


Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1158
Author(s):  
Lizeth Cifuentes ◽  
Michael Camilleri ◽  
Andres Acosta

Sensory and motor functions of the stomach, including gastric emptying and accommodation, have significant effects on energy consumption and appetite. Obesity is characterized by energy imbalance; altered gastric functions, such as rapid gastric emptying and large fasting gastric volume in obesity, may result in increased food intake prior to reaching usual fullness and increased appetite. Thus, many different interventions for obesity, including different diets, anti-obesity medications, bariatric endoscopy, and surgery, alter gastric functions and gastrointestinal motility. In this review, we focus on the role of the gastric and intestinal functions in food intake, pathophysiology of obesity, and obesity management.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Colleen Hadley ◽  
Isin Cakir ◽  
Roger D Cone

Abstract Overweight and obesity are global concerns affecting nearly one third of the world population. These conditions are characterized by increased adiposity and are accompanied by a proportional increase in circulating leptin, an anorexigenic adipokine. Leptin is responsible for signaling peripheral energy status to the central nervous system to modulate food intake and energy expenditure. As such, neurons within the hypothalamus expressing the long isoform of leptin receptor (LepRb), a type I cytokine receptor, are primarily responsible for mediating the effects of leptin, which signal predominantly through the JAK2-STAT3 transduction mechanism. STAT3 is a latent transcription factor activated upon phosphorylation, which triggers its homodimerization and nuclear translocation. Evidence, however, for JAK2-independent, STAT3-dependent leptin receptor signaling mechanisms exist. FAK (focal adhesion kinase, Ptk2) and Pyk2 (protein tyrosine kinase 2b, Ptk2b) are a subset of nonreceptor protein tyrosine kinases and comprise the focal adhesion kinase family. FAK and Pyk2 are implicated in the regulation of cytokine receptor signaling. Furthermore, Pyk2 knockout mice have an obesity prone phenotype. Here, we studied the role of the focal adhesion kinases in leptin receptor signaling using genetic and pharmacological approaches. We found that overexpression of Pyk2 or FAK increased STAT3 phosphorylation (activation). Overexpression of a FAK or Pyk2 construct with impaired kinase activity, however, attenuated STAT3 phosphorylation, suggesting the increase in STAT3 phosphorylation is largely dependent upon kinase activity of FAK/Pyk2. Treatment of cells with a small molecule dual inhibitor of FAK and Pyk2 (PF431396) attenuated leptin-induced STAT3 phosphorylation in a mouse hypothalamic cell line. Importantly, this effect is independent of JAK2, as PF treatment of two independent JAK2-deficient cell lines exhibited similar attenuation of leptin-induced STAT3 phosphorylation. To assess the physiological relevance of FAK/Pyk2 in leptin receptor signaling in vivo, we administered PF compound to the lateral ventricle of 24-hour fasted lean wild-type mice followed by peripheral leptin administration. Intracerebroventricular (ICV) administration of PF suppressed the anorectic effect of leptin as evidenced by impaired inhibition of food intake upon refeeding. Accordingly, analysis of total hypothalamic lysates from these mice showed ICV PF impaired leptin-induced STAT3 phosphorylation. Taken together, these data suggest that Pyk2 and/or FAK play a role in leptin signal transduction.


Sign in / Sign up

Export Citation Format

Share Document