Critical Role of Adrenal Glands in Precocious Increase in Jejunal Sucrase Activity Following Premature Weaning in Rats: Negligible Effect of Food Intake

1980 ◽  
Vol 110 (1) ◽  
pp. 169-177 ◽  
Author(s):  
John T. Boyle ◽  
Otakar Koldovský
2020 ◽  
Vol 21 (7) ◽  
pp. 2568
Author(s):  
Ujendra Kumar ◽  
Sneha Singh

Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.


1986 ◽  
Vol 251 (3) ◽  
pp. G362-G369
Author(s):  
K. R. Feingold ◽  
G. Zsigmond ◽  
S. R. Lear ◽  
A. H. Moser

The mechanism by which diabetes results in an increase in small intestinal cholesterol synthesis is unknown. Previous studies have demonstrated that limiting food intake prevents the increase in intestinal cholesterol synthesis, and it has therefore been proposed that the stimulation of cholesterol synthesis in the small intestine is secondary to the hyperphagia that is associated with poorly controlled diabetes. To shed further light on the role of hyperphagia we have studied the effect on cholesterol synthesis of a variety of conditions that increase food intake. In third-trimester pregnant animals, lactating animals, obese animals, and in animals infused intragastrically with 16 g glucose/day vs. 8 g glucose/day, we have observed that an increase in food intake is associated with an increase in small intestinal cholesterol synthesis. Furthermore, these findings support the hypothesis that hyperphagia is the chief stimulus for the increase in cholesterol synthesis in the small intestine of diabetic animals. Additional studies have demonstrated that simply increasing the bulk of food ingested by adding Alphacel to the diet does not alter cholesterol synthesis in the small intestine. Lastly, in animals in whom Thiry fistulas were surgically constructed we observed that cholesterol synthesis is increased in the diabetic animals in both the segment of the small intestine in contact with the food stream and the segment of the small intestine that is excluded from contact. This observation suggests that the direct contact of the intestinal mucosa with caloric sources is not the sole trigger for increasing small intestinal cholesterol synthesis in hyperphagic diabetic animals.(ABSTRACT TRUNCATED AT 250 WORDS)


PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8488 ◽  
Author(s):  
Shu Lin ◽  
Yan-Chuan Shi ◽  
Ernie Yulyaningsih ◽  
Aygul Aljanova ◽  
Lei Zhang ◽  
...  

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 451
Author(s):  
Heike Münzberg ◽  
Prachi Singh ◽  
Steven B. Heymsfield ◽  
Sangho Yu ◽  
Christopher D. Morrison

The hormone leptin plays a critical role in energy homeostasis, although our overall understanding of acutely changing leptin levels still needs improvement. Several developments allow a fresh look at recent and early data on leptin action. This review highlights select recent publications that are relevant for understanding the role played by dynamic changes in circulating leptin levels. We further discuss the relevance for our current understanding of leptin signaling in central neuronal feeding and energy expenditure circuits and highlight cohesive and discrepant findings that need to be addressed in future studies to understand how leptin couples with physiological adaptations of food intake and energy expenditure.


Appetite ◽  
2015 ◽  
Vol 84 ◽  
pp. 251-258 ◽  
Author(s):  
Frans Folkvord ◽  
Doeschka J. Anschütz ◽  
Reinout W. Wiers ◽  
Moniek Buijzen

Author(s):  
Yongjie Yang ◽  
Yong Xu

Abstract The prevalence of obesity and the associated comorbidities highlight the importance of understanding the regulation of energy homeostasis. The central melanocortin system plays a critical role in controlling body weight balance. Melanocortin neurons sense and integrate the neuronal and hormonal signals, and then send regulatory projections, releasing anorexigenic or orexigenic melanocortin neuropeptides, to downstream neurons to regulate the food intake and energy expenditure. This review summarizes the latest progress in our understanding of the role of the melanocortin pathway in energy homeostasis. We also review the advances in the identification of human genetic variants that cause obesity via mechanisms that affect the central melanocortin system, which have provided rational targets for treatment of genetically susceptible patients.


Sign in / Sign up

Export Citation Format

Share Document