The form-stable phase change materials based on polyethylene glycol and functionalized carbon nanotubes for heat storage

2015 ◽  
Vol 90 ◽  
pp. 952-956 ◽  
Author(s):  
Lili Feng ◽  
Chongyun Wang ◽  
Ping Song ◽  
Haibo Wang ◽  
Xiaoran Zhang
Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2011 ◽  
Author(s):  
Xiaolong Su ◽  
Shikui Jia ◽  
Guowei Lv ◽  
Demei Yu

Polyethylene glycol (PEG)/hybrid carbon foam (CF) phase change materials (PCMs) were prepared by integrating PEG into CF via dynamic-vacuum impregnation. The hybrid CF was first synthesized by mixtures of graphene oxide (GO) and carbon nanotubes (CNTs) with different volume ratios. The morphologies, chemical structures, thermal conductivities, shape-stabilization levels, and photo-thermal energy conversion levels of these composite PCMs were characterized systematically. The prepared composite PCMs exhibited good shape-stabilization levels and showed their original shapes without any PEG leakage. It was found that the polyethylene glycol/carbon foam with multi-walled carbon nanotubes (PEG/MCF) composite PCMs had a better shape-stable performance below the temperature of 250 °C, and the thermal conductivity of the PEG/MCF composite PCMs reached as high as 1.535 W/(mK), which was obviously higher than that of polyethylene glycol/carbon foam with single-walled carbon nanotubes (PEG/SCF, 1.159 W/(mK)). The results of the photo-thermal simulation tests showed that the composite PCMs had the ability to absorb light energy and then convert it to thermal energy, and the maximum thermal energy storage efficiency of the PEG/MCF composite PCMs and the PEG/SCF composite PCMs was 92.1% and 90.6%, respectively. It was considered that a valuable technique to produce high-performance composite PCMs was developed.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 889 ◽  
Author(s):  
Yong Deng ◽  
Mingyue He ◽  
Jinhong Li ◽  
Zhiwei Yang

Polyethylene glycol (PEG)-carbon nanotubes (CNTs) with expanded vermiculite (EVM) form-stable composite phase change materials (PCE-CPCMs) were constructed via the efficient synergistic effect between EVM and CNTs. The resultant material demonstrated simultaneously enhanced latent heat and heat transfer. The unique EVM pore structure and CNTs surfaces contributed to the form stability of PCE-CPCMs. The adsorption capacity was 77.75–81.54 wt %. The latent heat of the PCE-CPCMs increased with increasing CNTs content due to the decreasing inhibition effect of EVM and the increasing adsorption capacity of PEG, which was 83.9 J/g during melting and 104.2 J/g during solidification for PCE7.09. The pore confinement and surface EVM interactions inhibited the heat storage capacity of the PCE-CPCMs. Moreover, the inhibition effect on the heat storage capacity of PCE-CPCMs during the melting process was stronger than during solidification due to the crystallization-promoting effect. The heat transfer of PCE-CPCMs was significantly enhanced by the CNTs filler (0.5148 W/(m·K) for PCE7.09) due to the decrease in interfacial thermal resistance and the formation of rapid thermally conductive pathways. Fourier transform infrared spectroscopy, thermogravimetric analysis, and thermal cycles test results confirmed that the PCE-CPCMs exhibited excellent chemical compatibility, thermal stability, and reliability.


2017 ◽  
Vol 149 ◽  
pp. 463-470 ◽  
Author(s):  
Xiaoguang Zhang ◽  
Ruilong Wen ◽  
Zhaohui Huang ◽  
Chao Tang ◽  
Yaoting Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document