Cooling performance of two-phase closed thermosyphons installed at a highway embankment in permafrost regions

2016 ◽  
Vol 98 ◽  
pp. 220-227 ◽  
Author(s):  
Fan Yu ◽  
Jilin Qi ◽  
Mingyi Zhang ◽  
Yuanming Lai ◽  
Xiaoliang Yao ◽  
...  
Solar Energy ◽  
2019 ◽  
Vol 177 ◽  
pp. 22-31 ◽  
Author(s):  
Wansheng Pei ◽  
Mingyi Zhang ◽  
Zhongrui Yan ◽  
Shuangyang Li ◽  
Yuanming Lai

2010 ◽  
Vol 168-170 ◽  
pp. 663-668
Author(s):  
Li Jun Yang ◽  
Wen Hui Bai ◽  
Bin Xiang Sun ◽  
Shuang Jie Wang ◽  
Jin Zhao Zhang

For the construction of the proposed Qinghai-Tibet Express Highway in warm and ice-rich permafrost regions, it will be necessary to utilize the new technique of cooling the ground temperature by the coarsely crushed rock layer with a low fines content, instead of the traditional measures taken to increase simply thermal resistances, so as to protect from damage to highway embankment due to thaw settlement. The vibrating loads such as wheel load and tamping load may cause the breakage and abrasion of the matrix grains in the coarsely crushed rock layer. This results in decreasing of grain size and increasing of fines content in the crushed rock layer, thus decreasing the porosity of crushed rock layer. The smaller porosity of crushed rock layer may weaken the cooling effect of buoyancy-driven natural convection of the pore air in the crushed rock layer of the highway embankment, thus resulting in instability and failure of the embankment structure in permafrost regions. Under these conditions, the influence of vibrating load on the grain size distribution of the coarsely crushed rock layer has to be investigated experimentally. In the present study, laboratory experiments on the grain size variation of the coarsely crushed rock layer under vertically vibrating loads were carried out. The test results show that the vibrating load can cause the breakage and abrasion of the matrix grains in the coarsely crushed rock layer and the shapes of coarely crushed rock grain tend to be non-angular.


Author(s):  
Ki Won Song ◽  
Shripad T. Revankar ◽  
Hyun Sun Park ◽  
Bo Rhee ◽  
Kwang Soon Ha ◽  
...  

The two-phase natural circulation cooling performance of the APR1400 core catcher system is studied utilizing a drift flux flow model developed via scaling analysis and with an air-water experimental facility. Scaling analysis was carried out to identify key parameters, so that model facility could simulates two-phase natural circulation. In the experimental apparatus, instead of steam, air is injected into the top wall of the test channel to simulate bubble formation and void distribution due to boiling water in the core catcher channel. Measurement of void fraction critical to the heat transfer between the wall and coolant is carried out at certain key position using double-sensor conductivity probes. Results from the model provide expected natural circulation flow rate in the cooling channel of the core catcher system. The observed flow regimes and the data on void fraction are presented. For a given design of the down comer piping entrance condition bubble entrainment was observed that significantly reduced the natural circulation flow rate.


Sign in / Sign up

Export Citation Format

Share Document