scholarly journals Optimal operation of ground heat exchangers in presence of design anomalies: An approach based on second law analysis

2016 ◽  
Vol 99 ◽  
pp. 1018-1026 ◽  
Author(s):  
S. Cosentino ◽  
A. Sciacovelli ◽  
V. Verda ◽  
G. Noce
1996 ◽  
Vol 118 (3) ◽  
pp. 229-236 ◽  
Author(s):  
M. Pons

Adsorption processes can be used for operating environment-friendly refrigeration cycles. When combined with the thermal regeneration process, these cycles can have quite high performance. The second law analysis of the adsorption cycles with thermal regeneration is fully developed. The different heat transports between heat transfer fluid and adsorbent, between adsorbate and condenser/evaporator heat sources, and between heat transfer fluid and heat sources are analyzed. The entropy balance is then completely established. Consistency between the first law and second law analysis is verified by the numerical values of the entropy productions. The optimal Operation of an adsorber is then described, and the study of those optimal conditions lead to some correlation between the different internal entropy productions.


1991 ◽  
Vol 113 (2) ◽  
pp. 329-336 ◽  
Author(s):  
R. B. Evans ◽  
M. R. von Spakovsky

In this paper, two fundamental principles of differential Second Law analysis are set forth for heat exchanger design. The first principle defines a Second Law temperature, while the second principle defines a Second Law temperature difference. The square of the ratio of the Second Law temperature difference to the Second Law temperature is shown always to be equal to the negative of the partial derivative of the rate of entropy generation (for heat transfer) with respect to the overall conductance of the heat exchanger. For the basic design of elementary heat exchangers, each of these two Second Law quantities is shown to take the form of a simple geometric average. Nonelementary considerations result in corrected geometric averages, which relate directly to the corrected log-mean temperature difference. Both the corrected log-mean temperature difference (nonelementary considerations) and the uncorrected or just log-mean temperature difference (elementary considerations) are widely used in heat exchanger analysis. The importance of these two principles in both exergy and essergy analysis is illustrated by a unified basic treatment of the optimum design of elementary heat exchangers. This results in a single optimization expression for all flow arrangements (i.e., counterflow, parallel flow, and certain crossflow cases).


2005 ◽  
Vol 128 (3) ◽  
pp. 229-235 ◽  
Author(s):  
George A. Adebiyi

The major alternatives for producing work from fuel energy include combustion systems and fuel cells. Combustion systems are subject to several performance-limiting constraints. Key amongst these is the fact that combustion is an uncontrolled chemical reaction and is typically highly irreversible. The requirement to operate below the metallurgical limit adds to the irreversibility of practical combustion systems. Furthermore, the use of heat exchangers, which must have finite temperature differences between fluid streams, compounds the exergy consumption. The fuel cell conversion system is a major alternative to combustion systems. It operates as a direct conversion device and is often cited as having a potential for 100% second-law efficiency. Realistically, however, the chemical reactions involved are not reversible. More importantly, the available fuel resources must be reformed to make the chemical energy of the fuel convertible to work. The significant exergy input required must be factored into the determination of the overall exergy conversion efficiency attainable. This paper gives a simplified first- and second-law analysis for the limits of efficiency of these alternate systems for the conversion of fuel exergy to mechanical work, thus providing a more realistic comparison of the potential of both systems.


2016 ◽  
Vol 76 ◽  
pp. 118-125 ◽  
Author(s):  
Hamed Sadighi Dizaji ◽  
Shahram Khalilarya ◽  
Samad Jafarmadar ◽  
Mehran Hashemian ◽  
Mohammad Khezri

Sign in / Sign up

Export Citation Format

Share Document