Understanding the effect of operating conditions on thermal stratification and heat release in a homogeneous charge compression ignition engine

2017 ◽  
Vol 112 ◽  
pp. 392-402 ◽  
Author(s):  
Benjamin Lawler ◽  
Sotirios Mamalis ◽  
Satyum Joshi ◽  
Joshua Lacey ◽  
Orgun Guralp ◽  
...  
Author(s):  
Hu Tiegang ◽  
Liu Shenghua ◽  
Zhou Longbao ◽  
Zhu Chi

Dimethyl ether (DME) is a kind of fuel with high cetane number and low evaporating temperature, which is suitable for a homogeneous charge compression ignition (HCCI) engine. The combustion and emission characteristics of an HCCI engine fuelled with DME were investigated on a modified single-cylinder engine. The experimental results indicate that the HCCI engine combustion is a two-stage heat release process. The engine load or air-fuel ratio has significant effects on the maximum cylinder pressure and its position, the shape of the pressure rise rate and the heat release rate. The engine speed has little effect. A DME HCCI engine is smoke free, with zero NOx and low hydrocarbon and CO emissions under the operating conditions of 0.25–0.30 MPa brake mean effective pressure.


Author(s):  
Meshack Hawi ◽  
Mahmoud Ahmed ◽  
Shinichi Ookawara

Homogeneous charge compression ignition (HCCI) is a combustion technology which has received increased attention of researchers in the combustion field for its potential in achieving low oxides of nitrogen (NOx) and soot emission in internal combustion (IC) engines. HCCI engines have advantages of higher thermal efficiency and reduced emissions in comparison to conventional internal combustion engines. In HCCI engines, ignition is controlled by the chemical kinetics, which leads to significant variation in ignition time with changes in the operating conditions. This variation limits the practical range of operation of the engine. Additionally, since HCCI engine operation combines the operating principles of both spark ignition (SI) and compression ignition (CI) engines, HCCI engine parameters such as compression ratio and injection timing may vary significantly depending on operating conditions, including the type of fuel used. As such, considerable research efforts have been focused on establishing optimal conditions for HCCI operation with both conventional and alternative fuels. In this study, numerical simulation is used to investigate the effect of compression ratio on combustion and emission characteristics of an HCCI engine fueled by pure biodiesel. Using a zero-dimensional (0-D) reactor model and a detailed reaction mechanism for biodiesel, the influence of compression ratio on the combustion and emission characteristics are studied in Chemkin-Pro. Simulation results are validated with available experimental data in terms of incylinder pressure and heat release rate to demonstrate the accuracy of the simulation model in predicting the performance of the actual engine. Analysis shows that an increase in compression ratio leads to advanced and higher peak incylinder pressure. The results also reveal that an increase in compression ratio produces advanced ignition and increased heat release rates for biodiesel combustion. Emission of NOx is observed to increase with increase in compression ratio while the effect of compression ratio on emissions of CO, CO2 and unburned hydrocarbon (UHC) is only marginal.


2020 ◽  
pp. 146808742092948
Author(s):  
Juan Manuel Garcia-Guendulain ◽  
Alejandro Ramirez-Barron ◽  
José Manuel Riesco-Avila ◽  
Russell Whitesides ◽  
Salvador M Aceves

The very intensive calculations necessary to define a performance map requiring evaluation of over a hundred individual operating points can be efficiently conducted with accelerated multizone for engine cycle simulation, leading to a definition of regions of acceptable and optimum homogeneous charge compression ignition operation. Accelerated multizone for engine cycle simulation has the virtue of enabling accurate evaluation of many operating conditions based on thermal stratification data from a single fluid mechanics run at motored conditions. This is possible because thermal stratification is more sensitive to engine geometry than to operating conditions. In this article, accuracy of accelerated multizone for engine cycle simulation is demonstrated by comparison with experimental data for iso-octane homogeneous charge compression ignition operation over a broad range of lean equivalence ratios (0.14–0.28). The validated accelerated multizone for engine cycle simulation model is then applied to generating a performance map for an engine controlled by appropriately adjusting equivalence ratio and internal exhaust gas recirculation. Regions of acceptable and optimum combustion are identified. It is finally demonstrated that while indicated mean effective pressure remains low for optimum homogeneous charge compression ignition operation (1–4 bar), this is sufficient for a large fraction of typical driving in light-duty vehicles. Much driving including idle can therefore be done in homogeneous charge compression ignition mode at high efficiency and low (essentially zero) NO x and particulate matter emissions.


2018 ◽  
Vol 20 (8-9) ◽  
pp. 931-944
Author(s):  
Aimilios Sofianopoulos ◽  
Mozhgan Rahimi Boldaji ◽  
Benjamin Lawler ◽  
Sotirios Mamalis

The operating range of Homogeneous Charge Compression Ignition (HCCI) engines is limited to low and medium loads by high heat release rates. Negative valve overlap can be used to control ignition timing and heat release by diluting the mixture with residual gas and introducing thermal stratification. Cyclic variability in HCCI engines with NVO can result in reduced efficiency, unstable operation, and excessive pressure rise rates. Contrary to spark-ignition engines, where the sources of cyclic variability are well understood, there is a lack of understanding of the effects of turbulence on cyclic variability in HCCI engines and the dependence of cyclic variability on thermal stratification. A three-dimensional computational fluid dynamics (CFD) model of a 2.0L GM Ecotec engine cylinder, modified for HCCI combustion, was developed using Converge. Large Eddy Simulations (LES) were combined with detailed chemical kinetics for simulating the combustion process. Twenty consecutive cycles were simulated and the results were compared with individual cycle data of 300 consecutive experimental cycles. A verification approach based on the LES quality index indicated that this modeling framework can resolve more than 80% of the kinetic energy of the working fluid in the combustion chamber at the pre-ignition region. Lower cyclic variability was predicted by the LES model compared to the experiments. This difference is attributed to the resolution of the sub-grid velocity field, time averaging of the intake manifold pressure boundary conditions, and different variability in the equivalence ratio compared to the experimental data. Combustion phasing of each cycle was found to depend primarily on the bulk cylinder temperature, which agrees with established findings in the literature. Large cyclic variability of turbulent mixing and spatial distribution of temperature was predicted. However, both of these parameters were found to have a small effect on the cyclic variability of combustion phasing.


2019 ◽  
Vol 21 (9) ◽  
pp. 1709-1737 ◽  
Author(s):  
Maxime Pochet ◽  
Hervé Jeanmart ◽  
Francesco Contino

Internal combustion engines have been improved for many decades. Yet, complex phenomena are now resorted to, for which any optimum might be unstable: noise, low-temperature heat release timing, stratification, pollutant sweet spots, and so on. In order to make reliable statements on an improvement, one must specify the uncertainty related to it. Still, uncertainty quantification is generally missing in the piston engine experimental literature. Therefore, we detailed a mathematical methodology to obtain any engine parameter uncertainty and then used it to derive the uncertainty expressions of the physical quantities of the most generic homogeneous-charge compression–ignition research engine (mass-flow-induced mixture with [Formula: see text] fuel). We then applied those expressions on an existing hydrogen homogeneous-charge compression–ignition test bench. This includes the uncertainty propagation chain from sensor specifications, user calibrations, intake control, in-cylinder processes, and post-processing techniques. Directly measured physical quantities have uncertainties of around 1%, depending on the sensor quality (e.g. pressure, volume), but indirectly measured quantities relying on modelled parameters have uncertainties higher than 5% (e.g. wall heat losses, in-cylinder temperature, gross heat release, pressure rise rate). Other findings that such an analysis can bring relate, for example, to the physical quantities driving the uncertainty and to the ones that can be neglected. In the case of the homogeneous-charge compression–ignition engine considered, the effects of blow-by, bottle purity and air moisture content were found negligible; the post-processing for effective compression ratio, effective in-cylinder temperature, and top dead centre offset were found essential; and the pressure and volume uncertainties were found to be the main drivers to a large extent. The obtained numeric values serve the general purpose of alerting the experimenter on uncertainty order of magnitudes. The developed methodology shall be used and adapted by the experimenter willing to study the uncertainty propagation in their setup or willing to assess the adequacy of a sensor performance.


Sign in / Sign up

Export Citation Format

Share Document