scholarly journals Numerical analysis of small scale axial and radial turbines for solar powered Brayton cycle application

2017 ◽  
Vol 120 ◽  
pp. 672-693 ◽  
Author(s):  
Ahmed M. Daabo ◽  
Saad Mahmoud ◽  
Raya K. Al-Dadah ◽  
Ayad M. Al Jubori ◽  
Ali Bhar Ennil
2016 ◽  
Vol 128 ◽  
pp. 343-360 ◽  
Author(s):  
Ahmed M. Daabo ◽  
Ayad Al Jubori ◽  
Saad Mahmoud ◽  
Raya K. Al-Dadah

Author(s):  
Ahmed Mahmood Daabo ◽  
Saad Mahmoud ◽  
Raya K. Al-Dadah

Developing small scale turbines pauses challenges in terms of increased stresses due to high rotational speed leading to increase in component thicknesses and turbine overall weight. Therefore this study assesses both; the structural and aerodynamic performance of a Small Scale Radial Turbine SSRT by integrating finite-element methods FEM and Computational Fluid Dynamic CFD. Using Vista preliminary design model in ANSYS and detailed 3D CFD optimization, SSRT with 1–5 kW power for solar powered Brayton cycle was developed with high efficiency of 89.2%. Then both; the turbine’s hub and blades were structurally analysed under various loading conditions to investigate the effect of various rotational speeds and blade shapes on the stress distribution and deformation of the blades. The results of the current study showed that a maximum increment of 65% stress and 57% deformation was noticed when reaching the maximum studied rotational speed at inlet air temperature of 450 K.


Author(s):  
David Hemberger ◽  
Dietmar Filsinger ◽  
Hans-Jörg Bauer

Next to excitation forces and the dynamic properties of mistuned structures the damping behavior is a key feature to evaluate the dynamic turbine blade response and thus the HCF life of a bladed disk (blisk). Just as the determination of the mistuning properties and the assessment of the vibration excitation, the evaluation of damping is also subject to uncertainty especially considering the wide operating range of a small radial turbine of a turbocharger. Since the total damping is composed of material damping, structural damping and aerodynamic damping, which are affected by parameters, like the eigenform of the vibration, the magnitude of the vibration amplitude and aerodynamic properties, the total damping can be strongly dependent on the operating conditions. The study at hand provides results from investigations that allow estimating the contribution of aerodynamic damping on the total damping. Experimental and numerical analysis of radial turbines from turbochargers for vehicular engines with variable turbine inlet vanes were performed. Measurements under different environmental conditions such as at rest and during operation, as well as unsteady CFD calculations and, coupled flow and structural calculations were carried out. A change in total damping could be found depending on the density of the surrounding gas by vibration measurements in operation on the hot gas test bench. But it was also shown that the total damping is decisively influenced by the mistuning of the structure. On one side the structural damping is varied by the variation in mistuned blade vibration amplitudes and otherwise the aerodynamic damping is influenced by the different inter blade phase angles (IBPA ) due to the mistuning, which is a symptom of geometric differences and material inhomogeneity in the wheels. Finally, the estimated total damping values were utilized in forced response calculations using a mistuned FE-model of a real turbine and excitation forces from unsteady CFD calculation. The magnitudes of the measured vibration amplitudes were compared with results from numerical analysis to validate the numerical model with focus on the investigation about the total damping. The deviation between the results was ±10% for different eigenforms and excitation orders.


2000 ◽  
Vol 122 (4) ◽  
pp. 170-175 ◽  
Author(s):  
K. B. Franc¸a ◽  
H. M. Laborde ◽  
H. Neff

A small scale solar powered desalination system has been designed, analyzed, and optimized with regard to power needs and energy consumption. Both quantities scale linearly with the concentration of the total dissolved salt concentration (TDS) in the feed solution. The desalination of brackish water at a TDS value of 3,000 ppm requires an energy of approximately 1.5 kWh/m3. For seawater at a TDS value of 34,000 ppm, this value increases to 9.5 kWh/m3. The selected type of membrane, the system design, and, in particular, the efficiency of the high pressure pump crucially affect energy consumption. The desalination cost also has been estimated for a small scale system that linearly scale with the TDS value of the feed water. [S0199-6231(00)00104-0]


Author(s):  
Fabrizio Reale ◽  
Vincenzo Iannotta ◽  
Raffaele Tuccillo

The primary need of reducing pollutant and greenhouse gas emissions has led to new energy scenarios. The interest of research community is mainly focused on the development of energy systems based on renewable resources and energy storage systems and smart energy grids. In the latter case small scale energy systems can become of interest as nodes of distributed energy systems. In this context micro gas turbines (MGT) can play a key role thanks to their flexibility and a strategy to increase their overall efficiency is to integrate gas turbines with a bottoming cycle. In this paper the authors analyze the possibility to integrate a MGT with a super critical CO2 Brayton cycle turbine (sCO2 GT) as a bottoming cycle (BC). A 0D thermodynamic analysis is used to highlight opportunities and critical aspects also by a comparison with another integrated energy system in which the waste heat recovery (WHR) is obtained by the adoption of an organic Rankine cycle (ORC). While ORC is widely used in case of middle and low temperature of the heat source, s-CO2 BC is a new method in this field of application. One of the aim of the analysis is to verify if this choice can be comparable with ORC for this operative range, with a medium-low value of exhaust gases and very small power values. The studied MGT is a Turbec T100P.


Sign in / Sign up

Export Citation Format

Share Document