cfd optimization
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Edward De Jesús Rivera ◽  
Fanny Besem-Cordova ◽  
Jean-Charles Bonaccorsi

Abstract Fans are used in industrial refineries, power generation, petrochemistry, pollution control, etc. These fans can perform in sometimes extreme, mission-critical conditions. The design of fans has historically relied on turbomachinery affinity laws, resulting in oversized machines that are expensive to manufacture and transport. With the increasingly lower CPU cost of fluid modeling, designers can now turn to CFD optimization to produce the necessary machine performance and flow conditions while respecting manufacturing constraints. The objective of this study is to maximize the pressure rise across an industrial fan while respecting manufacturing constraints. First, a 3D scan of the baseline impeller is used to create the CFD model and validated against experimental data. The baseline impeller geometry is then parameterized with 21 free parameters driving the shape of the hub, shroud, blade lean and camber. A fully automated optimization process is conducted using Numeca’s Fine™/Design3D software, allowing for a CPU-efficient Design Of Experiment (DOE) database generation and a surrogate model using the powerful Minamo optimization kernel and data-mining tool. The optimized impeller coupled with a CFD-aided redesigned volute showed an increase in overall pressure rise over the whole performance line, up to 24% at higher mass flow rates compared to the baseline geometry.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2543
Author(s):  
Ranieri Marinari ◽  
Paolo Favuzza ◽  
Davide Bernardi ◽  
Francesco Saverio Nitti ◽  
Ivan Di Piazza

A detailed study of lithium-related topics in the IFMIF-DONES facility is currently being promoted and supported within the EUROfusion action, paying attention to different pivotal aspects including lithium flow stability and the monitoring and extraction of impurities. The resistivity meter is a device able to monitor online non-metallic impurities (mainly nitrogen) in flowing lithium. It relies on the variation of the electric resistivity produced by dissolved anions: the higher the concentration of impurities in lithium, the higher the resistivity measured. The current configuration of the resistivity meter has shown different measuring issues during its operation. All these issues reduce the accuracy of the measurements performed with this instrument and introduce relevant noise affecting the resistance value. This paper proposes different upgrades, supported by CFD simulations, to optimize lithium flow conditions and to reduce measurement problems. Owing to these upgrades, a new design of the resistivity meter has been achieved, which is simpler and easier to manufacture.


Author(s):  
Abubaker Ahmed Mohammed Mohammedali ◽  
Ki-Seong Kim

Abstract Centrifugal pumps are often used for pumping liquids from one priority area to another, which require to work effectively in terms of performance and reliability. The objective of this study is enhancing the hydraulic performance and reliability of a centrifugal pump based on computational fluid dynamics (CFD) optimization. The shapes of expeller vane and volute tongue were optimized based on the following six design parameters; outer diameter, exit angle, front and rear heights, back sidewall gap, and tongue angle. The hydraulic efficiency and axial thrust were chosen as the optimization objectives. In this sense, a design of experiment (DOE) technique was utilized to generate 45 design samples. A response surface modeling (RSM) approach was employed to investigate the interaction between the parameters and objectives. The accuracy of the numerical simulation was verified by the experimental data and showed a good agreement. The optimization was found to improve the hydraulic efficiency by 2.92%, whereas the axial thrust was decreased by 7.51%.


Author(s):  
Yuto Takagi ◽  
Masahiro Inagaki ◽  
Ken’ichi Yano

Full mold casting is a casting process in which a mold made of wood or metal is substituted for a styrofoam model. This metal casting process is advantageous for the production of large-sized castings because it uses a foamed model. However, this unique process of melting a foamed model causes a problem which is the foamed model remains dissolved in the casting. This is called foam residue defect and is specific to full mold casting. In this study, we propose a new casting design called a residue trap to reduce these residue defects. This residue trap collects the residue of foam models included in the molten metal, which tends to be generated when the temperature of the molten metal becomes low by being attached to the product part in the same way to overflows. We also optimized the shape of the residue trap in terms of easing of post-treatment and increasing efficiency of collecting foam residue. Eventually, the effectiveness of the residue trap was verified by actual full mold casting experiments.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 204 ◽  
Author(s):  
Gao ◽  
Zhu ◽  
Zhang ◽  
Sun ◽  
Qin ◽  
...  

The lateral inlet/outlet plays a critical role in the connecting tunnels of a water delivery system in a pumped hydroelectric storage (PHES). Therefore, the shape of the inlet/outlet was improved through computational fluid dynamics (CFD) optimization based on optimal surrogate models. The CFD method applied in this paper was validated by a physical experiment that was carefully designed to meet bidirectional flow requirements. To determine a good compromise between the generation and pump mode, reasonable weights were defined to better evaluate the overall performance. In order to find suitable surrogate models to improve the optimization process, the best suited surrogate models were identified by an optimal model selection method. The optimal configurations of the surrogate model for the head loss and the velocity distribution coefficient were the Kriging model with a Gaussian kernel and the Kriging model with an Exponential kernel, respectively. Finally, a multi-objective surrogate-based optimization method was used to determine the optimum design. The overall head loss coefficient and velocity distribution coefficients were 0.248 and 1.416. Compared with the original shape, the coefficients decrease by 6.42% and 40.28%, respectively. The methods and findings of this work may provide practical guidelines for designers and researchers.


Author(s):  
Jian Liang ◽  
Shuhuai An ◽  
Songju Liu ◽  
Ruiqi Wang ◽  
Weilong Lv

Author(s):  
Zohar Hoter ◽  
Raymond S. Castner ◽  
Khairul Q. Zaman

Author(s):  
R. Freire ◽  
G. Hackl ◽  
A. Resende ◽  
P. Shivaram
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document